Trends and topics in IJPR from 1961 to 2017: a statistical history

Show simple item record

dc.contributor.author Romero Silva, Rodrigo
dc.contributor.other Campus Ciudad de México
dc.date.accessioned 2019-01-29T15:37:43Z
dc.date.available 2019-01-29T15:37:43Z
dc.date.issued 2018-12-18
dc.identifier.citation Romero Silva, R. y Marsillac, E. (2018). Trends and topics in IJPR from 1961 to 2017: a statistical history. International Journal of Production Research. DOI: 10.1080/00207543.2018.1551638 es_ES, en_US
dc.identifier.issn 0020-7543 es_ES, en_US
dc.identifier.uri http://scripta.up.edu.mx/xmlui/handle/123456789/4820
dc.identifier.uri http://dx.doi.org/10.1080/00207543.2018.1551638
dc.description.abstract This paper studies the history of the International Journal of Production Research (IJPR) by analysing the topics that have received the most attention in each of the journal’s publication years. Text mining exposed for scrutiny the most frequently mentioned and cited terms contained in the titles, abstracts and keywords of IJPR papers. Analyses suggest that the triad of scheduling/optimisation/simulation and supply-chain-related topics have been IJPR’s mainstays, but valuable opportunities remain for relevant topics that have not yet been concurrently and frequently studied. Results also show that terms related to sustainability and risk management topics have gained recent relevance. In addition, IJPR appears to complement its modelling technique focus with empirical methodological approaches to provide a well-balanced perspective, since the ‘case study’ term is common. Finally, a linear relationship is found between the number of papers that have covered certain topics and the number of citations those topics have received, highlighting which topics had fewer or more citations than expected, given the number of papers that covered those topics. IJPR stands as one of the most prestigious and established journals in its field and the results from this study indicate the evolving interests of the field for over half a century. © 2018, © 2018 Informa UK Limited, trading as Taylor & Francis Group. es_ES, en_US
dc.language.iso eng
dc.publisher Taylor and Francis Ltd. es_ES, en_US
dc.relation Versión aceptada es_ES, en_US
dc.relation.ispartof REPOSITORIO SCRIPTA es_ES, en_US
dc.relation.ispartof OPENAIRE es_ES, en_US
dc.rights Acceso Embargado es_ES, en_US
dc.rights.uri http://creativecommons.org/licenses/by-nc-sa/4.0 es_ES, en_US
dc.source International Journal of Production Research
dc.subject Bibliometric analysis es_ES, en_US
dc.subject Industrial engineering es_ES, en_US
dc.subject Operations management es_ES, en_US
dc.subject Operations research es_ES, en_US
dc.subject Scopus es_ES, en_US
dc.subject Text mining es_ES, en_US
dc.subject Industrial research es_ES, en_US
dc.subject Risk management es_ES, en_US
dc.subject Supply chains es_ES, en_US
dc.subject International journals es_ES, en_US
dc.subject Linear relationships es_ES, en_US
dc.subject Methodological approach es_ES, en_US
dc.subject Modelling techniques es_ES, en_US
dc.subject Data mining es_ES, en_US
dc.subject.classification INGENIERIA Y TECNOLOGIA es_ES, en_US
dc.subject.classification Ingeniería
dc.title Trends and topics in IJPR from 1961 to 2017: a statistical history es_ES, en_US
dc.type Artículo es_ES, en_US
dcterms.audience Investigadores
dcterms.audience Estudiantes
dcterms.audience Maestros
dcterms.bibliographicCitation Adebanjo, D., Teh, P.-L., Ahmed, P.K., The Impact of Supply Chain Relationships and Integration on Innovative Capabilities and Manufacturing Performance: The Perspective of Rapidly Developing Countries (2018) International Journal of Production Research, 56 (4), pp. 1708-1721. https://doi.org/10.1080/00207543.2017.1366083
dcterms.bibliographicCitation Akkermans, H.A., Van Wassenhove, L.N., Searching for the Grey Swans: The Next 50 Years of Production Research (2013) International Journal of Production Research, 51 (23-24), pp. 6746-6755. https://doi.org/10.1080/00207543.2013.849827
dcterms.bibliographicCitation Akmal, A., Podgorodnichenko, N., Greatbanks, R., Everett, A.M.M., Bibliometric Analysis of Production Planning and Control (1990–2016) (2018) Production Planning & Control, 29 (4), pp. 333-351. https://doi.org/10.1080/09537287.2018.1429030
dcterms.bibliographicCitation Al-Mudimigh, A.S., Zairi, M., Ahmed, A.M.M., Extending the Concept of Supply Chain: The Effective Management of Value Chains (2004) International Journal of Production Economics, 87 (3), pp. 309-320. https://doi.org/10.1016/j.ijpe.2003.08.004
dcterms.bibliographicCitation Berry, M.W., (2004) Survey of Text Mining, , https://doi.org/10.1007/978-1-4757-4305-0, 1st ed, New York, NY: Springer-Verlag
dcterms.bibliographicCitation Cancino, C., Merigó, J.M.M., Coronado, F., Dessouky, Y., Dessouky, M., Forty Years of Computers & Industrial Engineering: A Bibliometric Analysis (2017) Computers & Industrial Engineering, 113, pp. 614-629. https://doi.org/10.1016/j.cie.2017.08.033
dcterms.bibliographicCitation Chircu, A., Kononchuk, N., Li, G., Qi, Y., Stavrulaki, E., Business Analytics and Supply Chain and Operations Management–A Text Mining-Based Literature Review (2016) Proceedings for the Northeast Region Decision Sciences Institute, pp. 1-24. , Alexandria, VA: Decision Sciences Institute
dcterms.bibliographicCitation Choudhary, A.K., Harding, J.A., Tiwari, M.K., Data Mining in Manufacturing: A Review Based on the Kind of Knowledge (2009) Journal of Intelligent Manufacturing, 20 (5), pp. 501-521. https://doi.org/10.1007/s10845-008-0145-x
dcterms.bibliographicCitation Cobo, M.J., López-Herrera, A.G., Herrera-Viedma, E., Herrera, F., Science Mapping Software Tools: Review, Analysis, and Cooperative Study among Tools (2011) Journal of the American Society for Information Science and Technology, 62 (7), pp. 1382-1402. https://doi.org/10.1002/asi.21525
dcterms.bibliographicCitation Cunningham, S.W., Porter, A.L., Newman, N.C., Special Issue on Tech Mining (2006) Technological Forecasting and Social Change, 73 (8), pp. 915-922. https://doi.org/10.1016/j.techfore.2006.06.004
dcterms.bibliographicCitation Diallo, C., Venkatadri, U., Khatab, A., Bhakthavatchalam, S., State of the Art Review of Quality, Reliability and Maintenance Issues in Closed-Loop Supply Chains with Remanufacturing (2017) International Journal of Production Research, 55 (5), pp. 1277-1296. https://doi.org/10.1080/00207543.2016.1200152
dcterms.bibliographicCitation Dolgui, A., 55th Anniversary of Production Research (2017) International Journal of Production Research, 55 (1), pp. 1-2. https://doi.org/10.1080/00207543.2016.1261649
dcterms.bibliographicCitation Dolgui, A., Proth, J.-M., Outsourcing: Definitions and Analysis (2013) International Journal of Production Research, 51 (23-24), pp. 6769-6777. https://doi.org/10.1080/00207543.2013.855338
dcterms.bibliographicCitation Ellegaard, O., Wallin, J.A.A., The Bibliometric Analysis of Scholarly Production: How Great is the Impact? (2015) Scientometrics, 105 (3), pp. 1809-1831. https://doi.org/10.1007/s11192-015-1645-z
dcterms.bibliographicCitation Elsevier, B.V., (2018), http://www.scopus.com, Scopus; Feinerer, I., Hornik, K., Meyer, D., Text Mining Infrastructure in R (2008) Journal of Statistical Software, Articles, 25 (5), pp. 1-54. https://doi.org/10.18637/jss.v025.i05
dcterms.bibliographicCitation Feldman, R., Sanger, J., (2006) Text Mining Handbook: Advanced Approaches in Analyzing Unstructured Data, New York, NY: Cambridge University Press; Fry, T.D., Donohue, J.M., Outlets for Operations Management Research: A DEA Assessment of Journal Quality and Rankings (2013) International Journal of Production Research, 51 (23-24), pp. 7501-7526. https://doi.org/10.1080/00207543.2013.783245
dcterms.bibliographicCitation Fry, T.D., Donohue, J.M., Saladin, B.A., Shang, G., The Internationalisation of Operations Management Research (2015) International Journal of Production Research, 53 (16), pp. 4857-4887. https://doi.org/10.1080/00207543.2014.998792
dcterms.bibliographicCitation Fuchigami, H.Y., Rangel, S., A Survey of Case Studies in Production Scheduling: Analysis and Perspectives (2017) Journal of Computational Science. https://doi.org/10.1016/j.jocs.2017.06.004
dcterms.bibliographicCitation Giret, A., Trentesaux, D., Prabhu, V., Sustainability in Manufacturing Operations Scheduling: A State of the Art Review (2015) Journal of Manufacturing Systems, 37, pp. 126-140. https://doi.org/10.1016/j.jmsy.2015.08.002
dcterms.bibliographicCitation Hitt, M.A., Xu, K., Carnes, C.M., Resource Based Theory in Operations Management Research (2016) Journal of Operations Management, 41, pp. 77-94. https://doi.org/10.1016/j.jom.2015.11.002
dcterms.bibliographicCitation Hornik, K., Buchta, C., Zeileis, A., Open-Source Machine Learning: R Meets Weka (2009) Computational Statistics, 24 (2), pp. 225-232. https://doi.org/10.1007/s00180-008-0119-7
dcterms.bibliographicCitation (2017) International Journal of Production Research. https://www.tandf.co.uk//journals/pdf/55th-Anniversary-IJPR-citations.pdf
dcterms.bibliographicCitation Ivanov, D., Das, A., Choi, T.-M., New Flexibility Drivers for Manufacturing, Supply Chain and Service Operations (2018) International Journal of Production Research, pp. 1-10. https://doi.org/10.1080/00207543.2018.1457813
dcterms.bibliographicCitation Jacsó, P., Calculating the H-index and Other Bibliometric and Scientometric Indicators from Google Scholar with the Publish or Perish Software (2009) Online Information Review, 33 (6), pp. 1189-1200. https://doi.org/10.1108/14684520911011070
dcterms.bibliographicCitation Jacsó, P., Google Scholar Metrics for Publications: The Software and Content Features of a New Open Access Bibliometric Service (2012) Online Information Review, 36 (4), pp. 604-619. https://doi.org/10.1108/14684521211254121
dcterms.bibliographicCitation Jodlbauer, H., Huber, A., Service-Level Performance of MRP, Kanban, CONWIP and DBR Due to Parameter Stability and Environmental Robustness (2008) International Journal of Production Research, 46 (8), pp. 2179-2195. https://doi.org/10.1080/00207540600609297
dcterms.bibliographicCitation Ke, Q., Ahn, Y.-Y., Sugimoto, C.R., A Systematic Identification and Analysis of Scientists on Twitter (2017) PLOS ONE, 12 (4), pp. 1-17. https://doi.org/10.1371/journal.pone.0175368
dcterms.bibliographicCitation Kim, B.S., Kang, B.G., Choi, S.H., Kim, T.G., Data Modeling Versus Simulation Modeling in the Big Data Era: Case Study of a Greenhouse Control System (2017) SIMULATION, 93 (7), pp. 579-594. https://doi.org/10.1177/0037549717692866
dcterms.bibliographicCitation Kim, M., Suresh, N.C., Kocabasoglu-Hillmer, C., An Impact of Manufacturing Flexibility and Technological Dimensions of Manufacturing Strategy on Improving Supply Chain Responsiveness: Business Environment Perspective (2013) International Journal of Production Research, 51 (18), pp. 5597-5611. https://doi.org/10.1080/00207543.2013.790569
dcterms.bibliographicCitation Kusiak, A., Smart Manufacturing (2018) International Journal of Production Research, 56 (1-2), pp. 1-10. https://doi.org/10.1080/00207543.2017.1351644
dcterms.bibliographicCitation Laengle, S., Merigó, J.M.M., Miranda, J., Słowiński, R., Bomze, I., Borgonovo, E., Dyson, R.G.G., Teunter, R., Forty Years of the European Journal of Operational Research: A Bibliometric Overview (2017) European Journal of Operational Research, 262 (3), pp. 803-816. https://doi.org/10.1016/j.ejor.2017.04.027
dcterms.bibliographicCitation Li, S., Optimal Control of Production-Maintenance System with Deteriorating Items, Emission Tax and Pollution R&D Investment (2014) International Journal of Production Research, 52 (6), pp. 1787-1807. https://doi.org/10.1080/00207543.2013.848486
dcterms.bibliographicCitation Li, X., Olafsson, S., Discovering Dispatching Rules Using Data Mining (2005) Journal of Scheduling, 8 (6), pp. 515-527. https://doi.org/10.1007/s10951-005-4781-0
dcterms.bibliographicCitation Li, G., Ooi, B.C., Feng, J., Wang, J., Zhou, L., EASE: An Effective 3-in-1 Keyword Search Method for Unstructured, Semi-Structured and Structured Data (2008) Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, pp. 903-914. https://doi.org/10.1145/1376616.1376706
dcterms.bibliographicCitation SIGMOD ‘08, New York, NY: ACM, and; Liao, Y., Deschamps, F., Rocha Loures, E.D.F., Pierin Ramos, L.F., Past, Present and Future of Industry 4.0 - a Systematic Literature Review and Research Agenda Proposal (2017) International Journal of Production Research, 55 (12), pp. 3609-3629. https://doi.org/10.1080/00207543.2017.1308576
dcterms.bibliographicCitation Lu, H.L., Huang, G.Q., Yang, H.D., Integrating Order Review/Release and Dispatching Rules for Assembly Job Shop Scheduling Using a Simulation Approach (2011) International Journal of Production Research, 49 (3), pp. 647-669. https://doi.org/10.1080/00207540903524490
dcterms.bibliographicCitation Meredith, J.R., Pilkington, A., Assessing the Exchange of Knowledge between Operations Management and Other Fields: Some Challenges and Opportunities (2018) Journal of Operations Management, 60, pp. 47-53. https://doi.org/10.1016/j.jom.2018.05.004
dcterms.bibliographicCitation Merigó, J.M.M., Yang, J.-B., A Bibliometric Analysis of Operations Research and Management Science (2017) Omega, 73, pp. 37-48. https://doi.org/10.1016/j.omega.2016.12.004
dcterms.bibliographicCitation Moeuf, A., Pellerin, R., Lamouri, S., Tamayo-Giraldo, S., Barbaray, R., The Industrial Management of SMEs in the Era of Industry 4.0 (2018) International Journal of Production Research, 56 (3), pp. 1118-1136. https://doi.org/10.1080/00207543.2017.1372647
dcterms.bibliographicCitation Mooi, E., Sarstedt, M., Cluster Analysis (2011) A Concise Guide to Market Research. The Process, Data, and Methods Using IBM SPSS Statistics, pp. 237-284. https://doi.org/10.1007/978-3-642-12541-6
dcterms.bibliographicCitation Mooi E., Sarstedt M., (eds), New York: Springer, and,. edited by; O’Brien, C., Fifty Years of Shifting Paradigms (2013) International Journal of Production Research, 51 (23-24), pp. 6740-6745. https://doi.org/10.1080/00207543.2013.852267
dcterms.bibliographicCitation Öner-Közen, M., Minner, S., Dynamic Pricing, Leadtime Quotation and Due Date Based Priority Dispatching (2017) International Journal of Production Research, pp. 1-13. https://doi.org/10.1080/00207543.2017.1397791
dcterms.bibliographicCitation (2016), The R Project for Statistical Computing; Rodgers, J.L., Nicewander, W.A., Thirteen Ways to Look at the Correlation Coefficient (1988) The American Statistician, 42 (1), pp. 59-66. https://doi.org/10.1080/00031305.1988.10475524
dcterms.bibliographicCitation Romero-Silva, R., Santos, J., Hurtado, M., A Note on Defining Organisational Systems for Contingency Theory in OM (2018) Production Planning & Control: The Management of Operations, https://doi.org/10.1080/09537287.2018.1535146
dcterms.bibliographicCitation Sarmiento, R., Whelan, G., Thürer, M., A Note on ‘Beyond the Trade-off and Cumulative Capabilities Models: Alternative Models of Operations Strategy (2018) International Journal of Production Research, pp. 1-8. https://doi.org/10.1080/00207543.2018.1428773
dcterms.bibliographicCitation Schildt, H.A., Mattsson, J.T., A Dense Network Sub-Grouping Algorithm for Co-Citation Analysis and its Implementation in the Software Tool Sitkis (2006) Scientometrics, 67 (1), pp. 143-163. https://doi.org/10.1007/s11192-006-0054-8
dcterms.bibliographicCitation Schonberger, R.J., Brown, K.A., Missing Link in Competitive Manufacturing Research and Practice: Customer-Responsive Concurrent Production (2017) Journal of Operations Management, 49-51, pp. 83-87. https://doi.org/10.1016/j.jom.2016.12.006
dcterms.bibliographicCitation Shang, G., Saladin, B., Fry, T., Donohue, J., Twenty-Six Years of Operations Management Research (1985–2010): Authorship Patterns and Research Constituents in Eleven Top Rated Journals (2015) International Journal of Production Research, 53 (20), pp. 6161-6197. https://doi.org/10.1080/00207543.2015.1037935
dcterms.bibliographicCitation Simões, J.M., Gomes, C.F., Yasin, M.M., Changing Role of Maintenance in Business Organisations: Measurement Versus Strategic Orientation (2016) International Journal of Production Research, 54 (11), pp. 3329-3346. https://doi.org/10.1080/00207543.2015.1106611
dcterms.bibliographicCitation Srai, J.S., Ané, C., Institutional and Strategic Operations Perspectives on Manufacturing Reshoring (2016) International Journal of Production Research, 54 (23), pp. 7193-7211. https://doi.org/10.1080/00207543.2016.1193247
dcterms.bibliographicCitation Srinivas, S., Ravindran, A.R., Optimizing Outpatient Appointment System Using Machine Learning Algorithms and Scheduling Rules: A Prescriptive Analytics Framework (2018) Expert Systems with Applications, 102, pp. 245-261. https://doi.org/10.1016/j.eswa.2018.02.022
dcterms.bibliographicCitation Tavares Thomé, A.M., Scavarda, L.F., Scavarda, A.J., Conducting Systematic Literature Review in Operations Management (2016) Production Planning & Control, 27 (5), pp. 408-420. https://doi.org/10.1080/09537287.2015.1129464
dcterms.bibliographicCitation (2018), https://www.tandfonline.com/toc/tprs20/current, International Journal of Production Research Web Page; van Eck, N.J., Waltman, L., Software Survey: VOSviewer, a Computer Program for Bibliometric Mapping (2010) Scientometrics, 84 (2), pp. 523-538. https://doi.org/10.1007/s11192-009-0146-3
dcterms.bibliographicCitation Vaughan, L., Romero-Frías, E., Web Search Volume as a Predictor of Academic Fame: An Exploration of Google Trends (2014) Journal of the Association for Information Science and Technology, 65 (4), pp. 707-720. https://doi.org/10.1002/asi.23016
dcterms.bibliographicCitation Vieira, G.E., Herrmann, J.W., Lin, E., Rescheduling Manufacturing Systems: A Framework of Strategies, Policies, and Methods (2003) Journal of Scheduling, 6 (1), pp. 39-62. https://doi.org/10.1023/A:1022235519958
dcterms.bibliographicCitation Yin, Y., Stecke, K.E., Li, D., The Evolution of Production Systems from Industry 2.0 Through Industry 4.0 (2018) International Journal of Production Research, 56 (1-2), pp. 848-861. https://doi.org/10.1080/00207543.2017.1403664
dcterms.bibliographicCitation Zheng, B., Zhang, J., Yoon, S.W., Lam, S.S., Khasawneh, M., Poranki, S., Predictive Modeling of Hospital Readmissions Using Metaheuristics and Data Mining (2015) Expert Systems with Applications, 42 (20), pp. 7110-7120. https://doi.org/10.1016/j.eswa.2015.04.066


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Acceso Embargado Except where otherwise noted, this item's license is described as Acceso Embargado

Search Scripta


Advanced Search

Browse

My Account