A survey of machine learning approaches for age related macular degeneration diagnosis and prediction

Show simple item record

dc.contributor.author Martínez Velasco, Antonieta Teodora
dc.contributor.author Martínez Villaseñor, María de Lourdes Guadalupe
dc.contributor.other Campus Ciudad de México
dc.creator MARÍA DE LOURDES GUADALUPE MARTÍNEZ VILLASEÑOR:241561
dc.date.accessioned 2019-05-23T18:20:55Z
dc.date.available 2019-05-23T18:20:55Z
dc.date.issued 2018
dc.identifier.citation Martínez Velasco, A. T. y Martínez Villaseñor, M. de L. G. (2018). A survey of machine learning approaches for age related macular degeneration diagnosis and prediction. En: Castro, F, Miranda-Jiménez, S. y González-Mendoza, M. (editores). 16th Mexican international conference on artificial intelligence, MICAI 2017 : Enseneda, Mexico, October 23-28, 2017 : proceedings Part 1, Advances in soft computing, (Lecture notes in computer science, vol. 10632), (pp. 254-266). Cham : Springer. DOI: 10.1007/978-3-030-02837-4_21 es_ES, en_US
dc.identifier.isbn 9783030028367 es_ES, en_US
dc.identifier.issn 0302-9743 es_ES, en_US
dc.identifier.uri http://scripta.up.edu.mx/xmlui/handle/123456789/4838
dc.identifier.uri http://dx.doi.org/10.1007/978-3-030-02837-4_21
dc.description.abstract Age Related Macular Degeneration (AMD) is a complex disease caused by the interaction of multiple genes and environmental factors. AMD is the leading cause of visual dysfunction and blindness in developed countries, and a rising cause in underdeveloped countries. Currently, retinal images are studied in order to identify drusen in the retina. The classification of these images allows to support the medical diagnosis. Likewise, genetic variants and risk factors are studied in order to make predictive studies of the disease, which are carried out with the support of statistical tools and, recently, with Machine Learning (ML) methods. In this paper, we present a survey of studies performed in complex diseases under both approaches, especially for the case of AMD. We emphasize the approach based on the genetic variants of individuals, as it is a support tool for the prevention of AMD. According to the vision of personalized medicine, disease prevention is a priority to improve the quality of life of people and their families, as well as to avoid the inherent health burden. © Springer Nature Switzerland AG 2018. es_ES, en_US
dc.language.iso eng
dc.publisher Springer Verlag es_ES, en_US
dc.relation.ispartof REPOSITORIO SCRIPTA es_ES, en_US
dc.relation.ispartof OPENAIRE es_ES, en_US
dc.relation.ispartofseries Lecture Notes in Computer Science
dc.rights Acceso Embargado es_ES, en_US
dc.rights.uri http://creativecommons.org/licenses/by-nc-nd/4.0 es_ES, en_US
dc.rights.uri http://www.sherpa.ac.uk/romeo/issn/0302-9743/
dc.source 16th Mexican international conference on artificial intelligence, MICAI 2017 : Enseneda, Mexico, October 23-28, 2017 : proceedings Part 1, Advances in soft computing
dc.subject AMD es_ES, en_US
dc.subject Automated diagnosis es_ES, en_US
dc.subject Machine learning es_ES, en_US
dc.subject Pattern recognition es_ES, en_US
dc.subject Predictive diagnosis es_ES, en_US
dc.subject Artificial intelligence es_ES, en_US
dc.subject Classification (of information) es_ES, en_US
dc.subject Computer aided diagnosis es_ES, en_US
dc.subject Medical imaging es_ES, en_US
dc.subject Ophthalmology es_ES, en_US
dc.subject Pattern recognition es_ES, en_US
dc.subject Soft computing es_ES, en_US
dc.subject Statistical mechanics es_ES, en_US
dc.subject Surveys es_ES, en_US
dc.subject Age-related macular degeneration es_ES, en_US
dc.subject Automated diagnosis es_ES, en_US
dc.subject Developed countries es_ES, en_US
dc.subject Disease prevention es_ES, en_US
dc.subject Environmental factors es_ES, en_US
dc.subject Machine learning approaches es_ES, en_US
dc.subject Personalized medicines es_ES, en_US
dc.subject Visual dysfunctions es_ES, en_US
dc.subject Learning systems es_ES, en_US
dc.subject.classification INGENIERÍA Y TECNOLOGÍA
dc.subject.classification Ingeniería
dc.title A survey of machine learning approaches for age related macular degeneration diagnosis and prediction es_ES, en_US
dc.type Contribución a congreso es_ES, en_US
dcterms.audience Investigadores
dcterms.audience Estudiantes
dcterms.audience Maestros
dcterms.bibliographicCitation Nitsch, D., Gonçalves, J.P., Ojeda, F., de Moor, B., Moreau, Y.: Candidate gene prioritization by network analysis of differential expression using machine learning approaches. BMC Bioinform. 11, 460 (2010)
dcterms.bibliographicCitation Wong, W.L., et al.: Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob. Health 2, e106–e116 (2014)
dcterms.bibliographicCitation Sivakumaran, T.A., et al.: A 32 kb critical region excluding Y402H in CFH mediates risk for age-related macular degeneration. PLoS ONE 6, e25598 (2011)
dcterms.bibliographicCitation Stone, E.M., et al.: Recommendations for genetic testing of inherited eye diseases: report of the American academy of ophthalmology task force on genetic testing. Ophthalmology 119, 2408–2410 (2012)
dcterms.bibliographicCitation Fraccaro, P., et al.: Combining macula clinical signs and patient characteristics for age-related macular degeneration diagnosis: a machine learning approach. BMC Ophthalmol. 15, 10 (2015)
dcterms.bibliographicCitation Caixinha, M., Nunes, S.: Machine learning techniques in clinical vision sciences. Curr. Eye Res. 42, 1–15 (2016)
dcterms.bibliographicCitation Dasgupta, A., Sun, Y.: Brief review of regression-based and machine learning methods in genetic epidemiology: the Genetic Analysis Workshop 17 experience. Genet. Epidemiol. 35, 1–13 (2011)
dcterms.bibliographicCitation Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification, 2nd edn., p. 654. Wiley (2001)
dcterms.bibliographicCitation Hijazi, M.H.A., Coenen, F., Zheng, Y.: Data mining techniques for the screening of age-related macular degeneration. Knowledge-Based Syst. 29, 83–92 (2012)
dcterms.bibliographicCitation Priya, R., Aruna, P.: Automated diagnosis of age-related macular degeneration using machine learning techniques. Int. J. Comput. Appl. Technol. 49, 157 (2014)
dcterms.bibliographicCitation Tsai, C.-L., Yang, Y.-L., Chen, S.-J., Lin, K.-S., Chan, C.-H., Lin, W.-Y.: Automatic characterization of classic choroidal neovascularization by using adaboost for supervised learning. Investig. Opthalmol. Vis. Sci. 52, 2767 (2011)
dcterms.bibliographicCitation Acharya, U.R., et al.: Novel risk index for the identification of age-related macular degeneration using radon transform and DWT features. Comput. Biol. Med. 73, 131–140 (2016)
dcterms.bibliographicCitation Mookiah, M.R., et al.: Decision support system for age-related macular degeneration using discrete wavelet transform. Med. Biol. Eng. Comput. 52, 781–796 (2014)
dcterms.bibliographicCitation Liu, H., Xu, Y., Wong, D.W.K., Liu, J.: Growcut-based drusen segmentation for age-related macular degeneration detection. In: 2014 IEEE Visual Communications and Image Processing Conference, VCIP 2014, pp. 161–164 (2015)
dcterms.bibliographicCitation Liu, H., Xu, Y., Wong, D.W.K., Liu, J.: Effective drusen localization for early AMD screening using sparse multiple instance learning. In: Effective Drusen Localization for Early AMD Screening Using Sparse Multiple Instance Learning, pp. 73–80 (2015)
dcterms.bibliographicCitation Cheng, J., et al.: Early age-related macular degeneration detection by focal biologically inspired feature. In: Proceedings of International Conference on Image Processing, pp. 2805–2808. ICIP (2012)
dcterms.bibliographicCitation Garg, S., Sivaswamy, J., Datt Joshi, G.: Automatic drusen detection from colour retinal images. In: Conference on Computational Intelligence and Multimedia Applications, pp. 377–381. IEEE (2007)
dcterms.bibliographicCitation Acharya, U.R., et al.: Automated screening tool for dry and wet age-related macular degeneration (ARMD) using pyramid of histogram of oriented gradients (PHOG) and nonlinear features. J. Comput. Sci. 20, 41–51 (2017)
dcterms.bibliographicCitation Cacheiro Martínez, P., Ordovás, J.M., Corella, D.: Métodos de selección de variables en estudios de asociación genética. Aplicación a un estudio de genes candidatos en Enfermedad de Parkinson, Coruña, España (2011)
dcterms.bibliographicCitation Hindorff, L.A., et al.: Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. 106, 9362–9367 (2009)
dcterms.bibliographicCitation Iniesta, R.: Análisis estadístico de polimorfismos genéticos en estudios epidemiológicos. Gac. Sanit. 19, 333–341 (2005)
dcterms.bibliographicCitation Zhang, M., Baird, P.N.: A decade of age-related macular degeneration risk models: what have we learned from them and where are we going? Ophthalmic Genet. 38, 1–7 (2016)
dcterms.bibliographicCitation Larrañaga, P., et al.: Machine learning in bioinformatics. Brief. Bioinform. 7, 86–112 (2006)
dcterms.bibliographicCitation Spencer, K.L., et al.: Using genetic variation and environmental risk factor data to identify individuals at high risk for age-related macular degeneration. PLoS ONE 6, e17784 (2011)
dcterms.bibliographicCitation Jiang, R., Tang, W., Wu, X., Fu, W.: A random forest approach to the detection of epistatic interactions in case-control studies. BMC Bioinform. 10(Suppl 1), S65 (2009)
dcterms.bibliographicCitation Gold, B., et al.: Variation in factor B (BF) and complement component 2 (C2) genes is associated with age-related macular degeneration. Nat. Genet. 38, 458–462 (2006)
dcterms.bibliographicCitation Chen, X., Liu, C.-T., Zhang, M., Zhang, H.: A forest-based approach to identifying gene and gene–gene interactions. Proc. Natl. Acad. Sci. U. S. A. 104, 19199–19203 (2007)
dcterms.bibliographicCitation Çelebiler, A., Şeker, H., Yüksel, B., Oruns, A., Karaca, M.B.: Discovery of the connection among age-related macular degeneration, MTHFR C677T and PAI 1 4G/5G gene polymorphisms, and body mass index by means of Bayesian inference methods. Turk. J. Electr. Eng. Comput. Sci. 21, 2062–2078 (2013)
dcterms.bibliographicCitation Krishnaiah, S., Surampudi, B., Keeffe, J.: Modeling the risk of age-related macular degeneration and its predictive comparisons in a population in South India. Int. J. Community Med. Public Health 2, 137 (2015)
dcterms.bibliographicCitation Swaroop, A., Branham, K.E.H., Chen, W., Abecasis, G.: Genetic susceptibility to age-related macular degeneration: a paradigm for dissecting complex disease traits. Hum. Mol. Genet. 16, 174–182 (2007)
dc.description.version Versión aceptada


Files in this item

Files Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Acceso Embargado Except where otherwise noted, this item's license is described as Acceso Embargado

Search Scripta


Advanced Search

Browse

My Account