Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Machine Learning Approach for Pre-Eclampsia Risk Factors Association

2018 , Martínez Velasco, Antonieta Teodora , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis

The preeclampsia/eclampsia syndrome is a multisystem disorder that usually includes cardiovascular changes, hematologic abnormalities, hepatic and renal impairment, and neurologic or cerebral manifestations. Preeclampsia (PE) is a clinical syndrome that afflicts 3–5% of pregnancies and it is a leading cause of maternal mortality, especially in developing countries. To understand in greater depth the preeclampsia/eclampsia syndrome, we applied some well-known Machine Learning (ML) techniques. ML has been successfully applied to medical research to improve the diagnosis and the prevention of complex diseases and syndromes. In our contribution, we have created a supervised model to predict if a patient suffers the disease. This model has been optimized by selecting the best features and by optimizing the threshold when predicting a class. We used these techniques to point out the most related features of the patients to the disease. Finally, we used interpretability techniques to extract and visualize through a decision tree the most relevant associations of the disease with the patients' features. © 2018 Association for Computing Machinery.

No Thumbnail Available
Publication

Machine learning method to establish the connection between age related macular degeneration and some genetic variations

2016 , Martínez Velasco, Antonieta Teodora , Zenteno, Juan Carlos , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis , Pérez Ortiz, Andric Christopher , Estrada Mena, Francisco Javier

Medicine research based in machine learning methods allows the improvement of diagnosis in complex diseases. Age related Macular Degeneration (AMD) is one of them. AMD is the leading cause of blindness in the world. It causes the 8.7% of blind people. A set of case and controls study could be developed by machine-learning methods to find the relation between Single Nucleotide Polymorphisms (SNPs) SNP_A, SNP_B, SNP_C and AMD. In this paper we present a machine-learning based analysis to determine the relation of three single nucleotide SNPs and the AMD disease. The SNPs SNP_B, SNP_C remained in the top four relevant features with ophthalmologic surgeries and bilateral cataract. We aim also to determine the best set of features for the classification process. © Springer International Publishing AG 2016.

No Thumbnail Available
Publication

An Explainable Tool to Support Age-related Macular Degeneration Diagnosis

2022 , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis , Ponce, Hiram , Martínez Velasco, Antonieta Teodora

Artificial intelligence and deep learning, in particu-lar, have gained large attention in the ophthalmology community due to the possibility of processing large amounts of data and dig-itized ocular images. Intelligent systems are developed to support the diagnosis and treatment of a number of ophthalmic diseases such as age-related macular degeneration (AMD), glaucoma and retinopathy of prematurity. Hence, explainability is necessary to gain trust and therefore the adoption of these critical decision support systems. Visual explanations have been proposed for AMD diagnosis only when optical coherence tomography (OCT) images are used, but interpretability using other inputs (i.e. data point-based features) for AMD diagnosis is rather limited. In this paper, we propose a practical tool to support AMD diagnosis based on Artificial Hydrocarbon Networks (AHN) with different kinds of input data such as demographic characteristics, features known as risk factors for AMD, and genetic variants obtained from DNA genotyping. The proposed explainer, namely eXplainable Artificial Hydrocarbon Networks (XAHN) is able to get global and local interpretations of the AHN model. An explainability assessment of the XAHN explainer was applied to clinicians for getting feedback from the tool. We consider the XAHN explainer tool will be beneficial to support expert clinicians in AMD diagnosis, especially where input data are not visual. © 2022 IEEE.

No Thumbnail Available
Publication

The Relevance of Cataract as a Risk Factor for Age-Related Macular Degeneration: A Machine Learning Approach

2019 , Martínez Velasco, Antonieta Teodora , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis , Pérez Ortiz, Andric Christopher , Zenteno, Juan Carlos , Estrada Mena, Francisco Javier

Age-related macular degeneration (AMD) is the leading cause of visual dysfunction and irreversible blindness in developed countries and a rising cause in underdeveloped countries. There is a current debate on whether or not cataracts are significant risk factors for AMD development. In particular, research regarding this association is so far inconclusive. For this reason, we aimed to employ here a machine-learning approach to analyze the relevance and importance of cataracts as a risk factor for AMD in a large cohort of Hispanics from Mexico. We conducted a nested case control study of 119 cataract cases and 137 healthy unmatched controls focusing on clinical data from electronic medical records. Additionally, we studied two single nucleotide polymorphisms in the CFH gene previously associated with the disease in various populations as positive control for our method. We next determined the most relevant variables and found the bivariate association between cataracts and AMD. Later, we used supervised machine-learning methods to replicate these findings without bias. To improve the interpretability, we detected the five most relevant features and displayed them using a bar graph and a rule-based tree. Our findings suggest that bilateral cataracts are not a significant risk factor for AMD development among Hispanics from Mexico. © 2019 by the authors.

No Thumbnail Available
Publication

Addressing Class Imbalance in Healthcare Data: Machine Learning Solutions for Age-Related Macular Degeneration and Preeclampsia

2024 , Martínez Velasco, Antonieta Teodora , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis

The use of machine learning in healthcare has transformed the way diseases are diagnosed and treatments are optimized. However, medical databases often lack balanced data due to challenges in data collection caused by privacy regulations. Certain health conditions are underrepresented, which hampers machine learning performance. To address this problem, a hybrid approach has been proposed that combines the Synthetic Minority Oversampling Technique (SMOTE) with undersampling and uses two specific techniques tailored for imbalanced datasets. Comparative evaluations were conducted using various thresholds to reduce one class and employing Balanced Accuracy to mitigate bias toward the majority class, with popular machine learning methods. The results showed that Balanced Bagging and Balanced Random Forest consistently outperformed other methods, performing the best with an average ranking of 1.42 and 3.58 out of 32 configurations in the two datasets, respectively. Tree-based approaches such as Random Forest and Gradient Boosting demonstrated similar effectiveness, emphasizing the power of aggregating predictions from multiple trees to reduce bias. Notably, undersampling and SMOTE proved advantageous for non-tree-based models like KNN, SVM, and Logistic Regression showcasing their usefulness across different algorithms. This study provides a robust solution for handling imbalanced datasets in healthcare, which could potentially optimize healthcare interventions and improve patient outcomes and care©IEEE Latin America Transactions, The authors