Now showing 1 - 3 of 3
No Thumbnail Available
Publication

A new heuristic algorithm to solve Circle Packing problem inspired by nanoscale electromagnetic fields and gravitational effects

2018 , Martínez Ríos, Félix Orlando , Marmolejo Saucedo, José Antonio , Murillo-Suarez, Alfonso

In this paper, we present a new algorithm for the fast and efficient solution of the Packing problem in two dimensions. The packing problem consists in finding the best arrangement of objects (many geometrical forms) in a specific space called container.This new algorithm is inspired by the observations of nanometric scale electromagnetic fields. We use the electromagnetic theory of the electric field to calculate the best position to place a circular object in a configuration of other circular objects previously packing. Also, in this new algorithm we simulate two processes called »gravity» and »shaken» that compact the distribution of the objects placed in the container and allow to minimize the unoccupied space. © 2018 IEEE.

No Thumbnail Available
Publication

μ𝜃-EGF: A New Multi-Thread and Nature-Inspired Algorithm for the Packing Problem

2020 , Martínez Ríos, Félix Orlando , Marmolejo Saucedo, José Antonio , García-Jacas, César R. , Murillo-Suarez, Alfonso

In this paper, the authors present a new algorithm efficient solution to the packing problem in two dimensions. The authors propose a new heuristic using the value of the electromagnetic field to determine the best position to place a circular object in a configuration of other circular objects previously packed. Also, this algorithm simulates two processes to compact objects already placed, inspired by gravitational forces, to minimize the empty space in the container and maximizing the number of objects in the container. To determine the efficacy of this algorithm, the authors carried out experiments with twenty-four instances. Parallel computing can contribute to making decision processes such as optimization and prediction more agile and faster. Real-time decision making involves the use of solution methodologies and algorithms. For this reason the present manuscript shows an alternative for the solution of a classic industry problem that must be solved quickly. Packaging optimization can help reduce waste of container material. The material used to transport the products can reduce its environmental impact due to an efficient packaging process. Light-weighting can also be accomplished by reducing the amount of packaging material used. © Springer Nature

No Thumbnail Available
Publication

Packing algorithm inspired by gravitational and electromagnetic effects

2019 , Martínez Ríos, Félix Orlando , Murillo-Suarez, Alfonso

This paper introduces a faster and more efficient algorithm for solving a two-dimension packing problem. This common optimization problem takes a set of geometrical objects and tries to find the best form of packing them in a space with specific characteristics, called container. The visualization of nanoscale electromagnetic fields was the inspiration for this new algorithm, using the electromagnetic field between the previously placed objects, this paper explains how to determine the best positions for to place the remaining ones. Two gravitational phenomena are also simulated to achieve better results: shaken and gravity. They help to compact the objects to reduce the occupied space. This paper shows the executions of the packing algorithm for four types of containers: rectangles, squares, triangles, and circles. © Springer Nature