Now showing 1 - 10 of 11
No Thumbnail Available
Publication

Implementation of the cFS framework for the development of software in aerospace missions: first application in an undergraduate program in Mexico

2021 , M. De la Vega-Martínez , M.C. Velázquez-García , M.F. Zavala-López , Hernandez, Erika , R.A. Gutiérrez-Esparza , D.G. Arcos-Bravo , D. Medina , Gilardi Velázquez, Héctor Eduardo , D. McComas

Thumbnail Image
Publication

Observaciones ontólogicas al caos determinista como forma del universo

2001 , Gilardi Velázquez, Héctor Eduardo

Este artículo trata de explicar cómo algunos presupuesto de la Teoría del Caos Determinista convertirían la presencia del azar en los procesos naturales en una causa formal del universo. También se compara esta posición con una visión compatible de teleología metafísica.

No Thumbnail Available
Publication

Emergence of a square chaotic attractor through the collision of heteroclinic orbits

2020 , Gilardi Velázquez, Héctor Eduardo , Rodolfo J. Escalante-González , Eric Campos

No Thumbnail Available
Publication

On the behavior of bidirectionally coupled multistable systems

2022 , Ana Luisa Silva , Cassal Quiroga, Bahia Betzavet , G. Huerta-Cuellar , Gilardi Velázquez, Héctor Eduardo

No Thumbnail Available
Publication

Multistability route in a PWL multi-scroll system through fractional-order derivatives

2022 , J.L. Echenausía-Monroy , Gilardi Velázquez, Héctor Eduardo , Ning Wang , R. Jaimes-Reátegui , J.H. García-López , G. Huerta-Cuellar

No Thumbnail Available
Publication

A physical interpretation of fractional-order-derivatives in a jerk system: Electronic approach

2020 , J.L. Echenausía-Monroy , Gilardi Velázquez, Héctor Eduardo , R. Jaimes-Reátegui , V. Aboites , G. Huerta-Cuellar

No Thumbnail Available
Publication

Bidimensional Deterministic Model for Diffusion and Settling of Particles

2023 , Stephanie Esmeralda Velázquez Pérez , Eric Campos-Cantón , Guillermo Huerta Cuellar , Héctor Eduardo Gilardi Velázquez

In this paper, we present a study of the diffusion properties of a deterministic model for settling particles in two displacement dimensions. The particularities of the novel deterministic model include the generation of Brownian motion and a two-dimensional displacement model without stochastic processes, which are governed by a set of six differential equations. This model is a piecewise system consisting of subsystems governed by jerk equations. With this model, we can consider different conditions of diffusion in both the dimensions and size of the space where the particles are dispersed. The settling time versus the dispersion medium and its size, as well as the average settling time and its probability distributions, are analyzed. Furthermore, the probability distributions for the settling location are presented for the changes in the diffusion parameters and space size. Finally, the basins of attraction for the settling positions are shown as a function of each dimensional diffusion parameter and for the medium size.

No Thumbnail Available
Publication

Emergence of synchronous behavior in a network with chaotic multistable systems

2021 , A. Ruiz-Silva , Gilardi Velázquez, Héctor Eduardo , Eric Campos

No Thumbnail Available
Publication

Time Management of Modes of Operation for Survival of a Satellite Mission: Power Simulation in MATLAB and STK

2021 , Manuel González , Gilardi Velázquez, Héctor Eduardo , Gutiérrez, Sebastián , Ruiz-Martinez, O.F.

No Thumbnail Available
Publication

Multistability Emergence through Fractional-Order-Derivatives in a PWL Multi-Scroll System

2020 , José Luis Echenausía-Monroy , Guillermo Huerta-Cuellar , Rider Jaimes-Reátegui , Juan Hugo García-López , Vicente Aboites , Cassal Quiroga, Bahia Betzavet , Gilardi Velázquez, Héctor Eduardo

In this paper, the emergence of multistable behavior through the use of fractional-order-derivatives in a Piece-Wise Linear (PWL) multi-scroll generator is presented. Using the integration-order as a bifurcation parameter, the stability in the system is modified in such a form that produces a basin of attraction segmentation, creating many stable states as scrolls are generated in the integer-order system. The results here presented reproduce the same phenomenon reported in systems with integer-order derivatives, where the multistable regimen is obtained through a parameter variation. The multistable behavior reported is also validated through electronic simulation. The presented results are not only applicable in engineering fields, but they also enrich the analysis and the understanding of the implications of using fractional integration orders, boosting the development of further and better studies.