Now showing 1 - 2 of 2
No Thumbnail Available
Publication

A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset

2019 , Espinosa Loera, Ricardo Abel , Ponce, Hiram , Moya-Albor, Ernesto , Martinez-Villaseñor, Lourdes , Brieva, Jorge , Gutiérrez, Sebastián

The automatic recognition of human falls is currently an important topic of research for the computer vision and artificial intelligence communities. In image analysis, it is common to use a vision-based approach for fall detection and classification systems due to the recent exponential increase in the use of cameras. Moreover, deep learning techniques have revolutionized vision-based approaches. These techniques are considered robust and reliable solutions for detection and classification problems, mostly using convolutional neural networks (CNNs). Recently, our research group released a public multimodal dataset for fall detection called the UP-Fall Detection dataset, and studies on modality approaches for fall detection and classification are required. Focusing only on a vision-based approach, in this paper, we present a fall detection system based on a 2D CNN inference method and multiple cameras. This approach analyzes images in fixed time windows and extracts features using an optical flow method that obtains information on the relative motion between two consecutive images. We tested this approach on our public dataset, and the results showed that our proposed multi-vision-based approach detects human falls and achieves an accuracy of 95.64% compared to state-of-the-art methods with a simple CNN network architecture. © 2019 Elsevier Ltd

No Thumbnail Available
Publication

Application of Convolutional Neural Networks for Fall Detection Using Multiple Cameras

2020 , Espinosa Loera, Ricardo Abel , Ponce, Hiram , Gutiérrez, Sebastián , Martinez-Villaseñor, Lourdes , Moya-Albor, Ernesto , Brieva, Jorge

Currently one of the most important research issue for artificial intelligence and computer vision tasks is the recognition of human falls. Due to the current exponential increase in the use of cameras is it common to use vision-based approach for fall detection and classification systems. On another hand deep learning algorithms have transformed the way that we see vision-based problems. The Convolutional Neural Network (CNN) as deep learning technique offers more reliable and robust solutions on detection and classification problems. Focusing only on a vision-based approach, for this work we used images from a new public multimodal data set for fall detection (UP-Fall Detection dataset) published by our research team. In this chapter we present fall detection system using a 2D CNN analyzing multiple camera information. This method analyzes images in fixed time window frames extracting features using an optical flow method that obtains information of relative motion between two consecutive images. For experimental results, we tested this approach in UP-Fall Detection dataset. Results showed that our proposed multi-vision-based approach detects human falls achieving 95.64% in accuracy with a simple CNN network architecture compared with other state-of-the-art methods.