Now showing 1 - 10 of 77
No Thumbnail Available
Publication

An enhanced process of concept alignment for dealing with overweight and obesity

2013 , Martinez-Villaseñor, Lourdes , González-Mendoza, Miguel

A major challenge for creating personalized diet and activity applications is to capture static, semi-static and dynamic information about a person in a user-friendly way. Sharing and reusing information between heterogeneous sources like social networking applications, personal health records, specialized applications for diet and exercise monitoring, and personal devices with attached sensors can achieve a better understanding of the user. Gathering distributed user information from heterogeneous sources and making sense of it to enable user model interoperability entails handling the semantic heterogeneity of the user models. In this paper, we enhance the process of concept alignment to automatically determine semantic mapping relations to enable interoperability between heterogeneous health and fitting applications. We add an internal structure similarity measure to increase the quality of generated mappings of our previous work. We show that the addition of an internal structure analysis of source data in the process of concept alignment improves the efficiency and effectiveness of measuring results. Constrain and data type verification done in the internal structure analysis proved to be useful when dealing with common conflicts between concepts.

No Thumbnail Available
Publication

Explainable artificial hydrocarbon networks classifier applied to preeclampsia

2024 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Martínez Velasco, Antonieta Teodora

Explainability is crucial in domains where system decisions have significant implications for human trust in black-box models. Lack of understanding regarding how these decisions are made hinders the adoption of so-called clinical decision support systems. While neural networks and deep learning methods exhibit impressive performance, they remain less explainable than white-box approaches. Artificial Hydrocarbon Networks (AHN) is an effective black-box model that can be used to support critical clinical decisions if accompanied by explainability mechanisms to instill confidence among clinicians. In this paper, we present a use case involving global and local explanations for AHN models, provided with an automatic procedure so-called eXplainable Artificial Hydrocarbon Networks (XAHN). We apply XAHN to preeclampsia prognosis, enabling interpretability within an accurate black-box model. Our approach involves training a suitable AHN model using the cross-validation with ten repetitions, followed by a comparative analysis against four well-known machine learning techniques. Notably, the AHN model outperformed the others, achieving an F1-score of 74.91%. Additionally, we assess the efficacy of our XAHN explainer through a survey applied to clinicians, evaluating the goodness and satisfaction of the provided explanations. To the best of our knowledge, this work represents one of the earliest attempts to address the explainability challenge in preeclampsia prediction.© 2024 The Author(s). Published by Elsevier Inc.

No Thumbnail Available
Publication

Towards Constant Calculation in Disjunctive Inequalities Using Wound Treatment Optimization

2019 , Ponce, Hiram , Marmolejo Saucedo, José Antonio , Martinez-Villaseñor, Lourdes

When using the mixed-integer programming to model situations where the limit of the variables follows a box constraint, we find nonlinear problems. To solve this, linearization techniques of these disjunctive inequality constraints are typically used, including constants associated to the variable bounds called M-constants or big-M. Calculation of these constants is an open problem since their values affect the reliability of the optimal solution and convergence of the optimization algorithm. To solve this problem, this work proposes a new population-based metaheuristic optimization method, namely wound treatment optimization (WTO) for calculating the M-constant in a typical domain known as the fixed-charge transportation problem. WTO is inspired on the social wound treatment present in ants after raids. This method allows population diversity that allows to find near-optimal solutions. Experiments of the WTO method on the fixed-charge transportation problem validated its performance and efficiency to find tighten solutions of the M-constant that minimizes the objective function of the problem. © Springer Nature Switzerland AG 2019.

No Thumbnail Available
Publication

Mass Segmentation in Digital Mammograms

2015 , Carreras Cruz, María Victoria , Martinez-Villaseñor, Lourdes , Rosas-Pérez, Kevin Nataniel

Digital mammograms are among the most difficult medical images to read, because of the differences in the types of tissues and their low contrasts. This paper proposes a computer aided diagnostic system for mammographic mass detection that can distinguish between tumorous and healthy tissue among various parenchymal tissue patterns. This method consists in extraction of regions of interest, noise elimination, global contrast improvement, combined segmentation, and rule-based classification. The evaluation of the proposed methodology is carried out on Mammography Image Analysis Society (MIAS) dataset. The achieved results increased the detection accuracy of the lesions and reduced the number of false diagnoses of mammograms.

No Thumbnail Available
Publication

Process of Concept Alignment for Interoperability between Heterogeneous Sources

2013 , Martinez-Villaseñor, Lourdes , González-Mendoza, Miguel

Some researchers in the community of user modeling envision the need to share and reuse information scattered over different user models of heterogeneous sources. In a multi-application environment each application and service must repeat the effort of building a user model to obtain just a narrow understanding of the user. Sharing and reusing information between models can prevent the user from repeated configurations, help deal with application and services’ “cold start” problem, and provide enrichment to user models to obtain a better understanding of the user. But gathering distributed user information from heterogeneous sources to achieve user models interoperability implies handling syntactic and semantic heterogeneity. In this paper, we present a process of concept alignment to automatically determine semantic mapping relations that enable the interoperability between heterogeneous profile suppliers and consumers, given the mediation of a central ubiquitous user model. We show that the process of concept alignment for interoperability based in a two-tier matching strategy can allow the interoperability between social networking applications, FOAF, Personal Health Records (PHR) and personal devices.

No Thumbnail Available
Publication

An Explainable Tool to Support Age-related Macular Degeneration Diagnosis

2022 , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis , Ponce, Hiram , Martínez Velasco, Antonieta Teodora

Artificial intelligence and deep learning, in particu-lar, have gained large attention in the ophthalmology community due to the possibility of processing large amounts of data and dig-itized ocular images. Intelligent systems are developed to support the diagnosis and treatment of a number of ophthalmic diseases such as age-related macular degeneration (AMD), glaucoma and retinopathy of prematurity. Hence, explainability is necessary to gain trust and therefore the adoption of these critical decision support systems. Visual explanations have been proposed for AMD diagnosis only when optical coherence tomography (OCT) images are used, but interpretability using other inputs (i.e. data point-based features) for AMD diagnosis is rather limited. In this paper, we propose a practical tool to support AMD diagnosis based on Artificial Hydrocarbon Networks (AHN) with different kinds of input data such as demographic characteristics, features known as risk factors for AMD, and genetic variants obtained from DNA genotyping. The proposed explainer, namely eXplainable Artificial Hydrocarbon Networks (XAHN) is able to get global and local interpretations of the AHN model. An explainability assessment of the XAHN explainer was applied to clinicians for getting feedback from the tool. We consider the XAHN explainer tool will be beneficial to support expert clinicians in AMD diagnosis, especially where input data are not visual. © 2022 IEEE.

No Thumbnail Available
Publication

Preface

2024-01-01 , Martinez-Villaseñor, Lourdes

No Thumbnail Available
Publication

Advances in applied computational intelligence: MICAI 2016

2018 , Ponce, Hiram , González-Mendoza, Miguel , Martinez-Villaseñor, Lourdes

This special issue of the Journal Computing offers original contributions in all areas of artificial intelligence. Most of the research works included in this issue are extended papers presented in the 15th Mexican International Conference on Artificial Intelligence, MICAI 2016, held in Cancún, Quintana Roo, Mexico on October 23–29, 2016, under the organization of the Mexican Society for Artificial Intelligence (SMIA) in cooperation with the Instituto Tecnológico de Cancún. Other papers included were received through the open call for papers.

No Thumbnail Available
Publication

Distributed evolutionary learning control for mobile robot navigation based on virtual and physical agents

2020 , Ponce, Hiram , Moya-Albor, Ernesto , Martinez-Villaseñor, Lourdes , Brieva, Jorge

This paper presents a distributed evolutionary learning control based on social wound treatment for mobile robot navigation using an integrated multi-robot system comprised of simulated and physical robots. To do so, this work proposes an extension of the population-based metaheuristic wound treatment optimization (WTO) method into a distributed scheme. In addition, this distributed WTO method is implemented on the multi-robot system allowing them to experience the environment in their own and communicate their findings, resulting in an emergence intelligence. We implemented our proposal using the combination of five simulated robots with one physical robot for tuning a navigation controller to move freely in a workspace. Results showed that the solution found by this multi-robot system aims using the output controller in the physical robot for successfully achieving the goal to move the robot around a U-maze, without applying any transfer learning approach. We consider this proposal useful in evolutionary robotics, and of great importance to decrease the gap related to transfer knowledge in robotics from simulation to reality. © 2019 Elsevier B.V.

No Thumbnail Available
Publication

Design of a Soft Gripper Using Genetic Algorithms

2021 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Mayorga-Acosta, Carlos

In this paper, we present an artificial intelligence-assisted design of a soft robotic gripper. First, we formulate the design of the soft gripper as an optimization problem. Then, we design and configure a genetic algorithm (GA) method to solve the problem under design constraints. Lastly, we implement the whole system in co-simulation between the GA and a computer-aided design software that evaluates the candidate solutions using finite element analysis. A network-attached storage server connecting multiple nodes runs the GA method in parallel, to accelerate the process. After experimentation, we present simulation results to validate our approach. © 2021 Instituto Politécnico Nacional. All rights reserved.