Now showing 1 - 4 of 4
No Thumbnail Available
Publication

Preface : Advances in Soft Computing : 22nd Mexican International Conference on Artificial Intelligence, MICAI 2023, Yucatán, Mexico, November 13–18, 2023, Proceedings, Part II

2024-01-01 , Calvo, Hiram , Martinez-Villaseñor, Lourdes , Ponce, Hiram

The Mexican International Conference on Artificial Intelligence (MICAI) is a yearly international conference series that has been organized by the Mexican Society for Artificial Intelligence (SMIA) since 2000. MICAI is a major international artificial intelligence (AI) forum and the main event in the academic life of the country’s growing AI community. This year, MICAI 2023 was graciously hosted by the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS) and the Universidad Autónoma del Estado de Yucatán (UAEY). The conference presented a cornucopia of scientific endeavors. ©Springer.

No Thumbnail Available
Publication

Versatility of Artificial Hydrocarbon Networks for Supervised Learning

2018 , Ponce, Hiram , Martinez-Villaseñor, Lourdes

Surveys on supervised machine show that each technique has strengths and weaknesses that make each of them more suitable for a particular domain or learning task. No technique is capable to tackle every supervised learning task, and it is difficult to comply with all possible desirable features of each particular domain. However, it is important that a new technique comply with the most requirements and desirable features of as many domains and learning tasks as possible. In this paper, we presented artificial hydrocarbon networks (AHN) as versatile and efficient supervised learning method. We determined the ability of AHN to solve different problem domains, with different data-sources and to learn different tasks. The analysis considered six applications in which AHN was successfully applied. © Springer Nature Switzerland AG 2018.

No Thumbnail Available
Publication

Approaching Fall Classification Using the UP-Fall Detection Dataset: Analysis and Results from an International Competition

2020 , Ponce, Hiram , Martinez-Villaseñor, Lourdes

This chapter presents the results of the Challenge UP – Multimodal Fall Detection competition that was held during the 2019 International Joint Conference on Neural Networks (IJCNN 2019). This competition lies on the fall classification problem, and it aims to classify eleven human activities (i.e. five types of falls and six simple daily activities) using the joint information from different wearables, ambient sensors and video recordings, stored in a given dataset. After five months of competition, three winners and one honorific mention were awarded during the conference event. The machine learning model from the first place scored$$82.47\%$$ in$$F:1$$-score, outperforming the baseline of$$70.44\%$$. After analyzing the implementations from the participants, we summarized the insights and trends of fall classification. © 2020, Springer Nature Switzerland AG.

No Thumbnail Available
Publication

Open Source Implementation for Fall Classification and Fall Detection Systems

2020 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Nuñez Martínez, José Pablo , Moya-Albor, Ernesto , Brieva, Jorge

Distributed social coding has created many benefits for software developers. Open source code and publicly available datasets can leverage the development of fall detection and fall classification systems. These systems can help to improve the time in which a person receives help after a fall occurs. Many of the simulated falls datasets consider different types of fall however, very few fall detection systems actually identify and discriminate between each category of falls. In this chapter, we present an open source implementation for fall classification and detection systems using the public UP-Fall Detection dataset. This implementation comprises a set of open codes stored in a GitHub repository for full access and provides a tutorial for using the codes and a concise example for their application. © 2020, Springer Nature Switzerland AG.