Now showing 1 - 2 of 2
No Thumbnail Available
Publication

A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset

2019 , Espinosa Loera, Ricardo Abel , Ponce, Hiram , Moya-Albor, Ernesto , Martinez-Villaseñor, Lourdes , Brieva, Jorge , Gutiérrez, Sebastián

The automatic recognition of human falls is currently an important topic of research for the computer vision and artificial intelligence communities. In image analysis, it is common to use a vision-based approach for fall detection and classification systems due to the recent exponential increase in the use of cameras. Moreover, deep learning techniques have revolutionized vision-based approaches. These techniques are considered robust and reliable solutions for detection and classification problems, mostly using convolutional neural networks (CNNs). Recently, our research group released a public multimodal dataset for fall detection called the UP-Fall Detection dataset, and studies on modality approaches for fall detection and classification are required. Focusing only on a vision-based approach, in this paper, we present a fall detection system based on a 2D CNN inference method and multiple cameras. This approach analyzes images in fixed time windows and extracts features using an optical flow method that obtains information on the relative motion between two consecutive images. We tested this approach on our public dataset, and the results showed that our proposed multi-vision-based approach detects human falls and achieves an accuracy of 95.64% compared to state-of-the-art methods with a simple CNN network architecture. © 2019 Elsevier Ltd

No Thumbnail Available
Publication

Design and Analysis for Fall Detection System Simplification

2020 , Martinez-Villaseñor, Lourdes , Ponce, Hiram

This paper presents a methodology based on multimodal sensors to configure a simple, comfortable and fast fall detection and human activity recognition system that can be easily implemented and adopted. The methodology is based on the configuration of specific types of sensors, machine-learning methods and procedures. The protocol is divided into four phases: (1) database creation (2) data analysis (3) system simplification and (4) evaluation. Using this methodology, we created a multimodal database for fall detection and human activity recognition, namely UP-Fall Detection. It comprises data samples from 17 subjects that perform 5 types of falls and 6 different simple activities, during 3 trials. All information was gathered using 5 wearable sensors (tri-axis accelerometer, gyroscope and light intensity), 1 electroencephalograph helmet, 6 infrared sensors as ambient sensors, and 2 cameras in lateral and front viewpoints. The proposed novel methodology adds some important stages to perform a deep analysis of the following design issues in order to simplify a fall detection system: a) select which sensors or combination of sensors are to be used in a simple fall detection system, b) determine the best placement of the sources of information, and c) select the most suitable machine learning classification method for fall and human activity detection and recognition. Even though some multimodal approaches reported in literature only focus on one or two of the above-mentioned issues, our methodology allows simultaneously solving these three design problems related to a human fall and activity detection and recognition system. ©2020 Journal of visualized experiments : NLM (Medline)