Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Longitudinal atrophy characterization of cortical and subcortical gray matter in Huntington’s disease patients

2019 , Ramírez‐García, Gabriel , Gálvez , Víctor , Diaz, Rosalinda , Bayliss, Leo , Fernandez-Ruiz, Juan , Campos‐Romo, Aurelio

Huntington's disease (HD) is an inherited neurodegenerative disease with clinical manifestations that involve motor, cognitive and psychiatric deficits. Cross-sectional magnetic resonance imaging (MRI) studies have described the main cortical and subcortical macrostructural atrophy of HD. However, longitudinal studies characterizing progressive atrophy are lacking. This study aimed to describe the cortical and subcortical gray matter atrophy using complementary volumetric and surface-based MRI analyses in a cohort of seventeen early HD patients in a cross-sectional and longitudinal analysis and to correlate the longitudinal volumetric atrophy with the functional decline using several clinical measures. A group of seventeen healthy individuals was included as controls. After obtaining structural MRIs, volumetric analyses were performed in 36 cortical and 7 subcortical regions of interest per hemisphere and surface-based analyses were performed in the whole cortex, caudate, putamen and thalamus. Cross-sectional cortical surface-based and volumetric analyses showed significant decreases in frontoparietal and temporo-occipital cortices, while subcortical volumetric analysis showed significant decreases in all subcortical structures except the hippocampus. The longitudinal surface-based analysis showed widespread cortical thinning with volumetric decreases in the superior frontal lobe, while a subcortical volumetric decrease occurred in the caudate, putamen and thalamus with shape deformation on the anterior, medial and dorsal side. Functional capacity and motor status decline correlated with caudate progressive atrophy, while cognitive decline correlated with left superior frontal and right paracentral progressive atrophy. These results provide new insights into progressive volumetric and surface-based morphometric atrophy of gray matter in HD.

No Thumbnail Available
Publication

Motor and cognitive impairments in spinocerebellar ataxia type 7 and its correlations with cortical volumes

2018 , Chirino, Amanda , Hernandez‐Castillo, Carlos R. , Gálvez , Víctor , Contreras, Anabel , Diaz, Rosalinda , Beltran‐Parrazal, Luis , Fernandez-Ruiz, Juan

Spinocerebellar Ataxia Type 7 (SCA7) is a neurodegenerative disorder caused by cytosine-adenine-guanine (CAG) repeat expansion. It is clinically characterized by ataxia and visual loss. To date, little is known about SCA7 cognitive impairments and its relationship with grey matter volume (GMV) changes. The aim of this study was to explore SCA7 patients' performance in specific components of auditory-verbal neuropsychological tests and to correlate their scores with genetic mutation, severity of ataxia and GMV. We assessed verbal memory and verbal fluency proficiencies in 31 genetically confirmed SCA7 patients, and compared their results with 32 healthy matched volunteers; we also correlated CAG repeats and severity of motor symptoms with performance in the auditory-verbal tests. SCA7 patients exhibited deficiencies in several components of these cognitive tasks, which were independent of motor impairments and showed no relation to CAG repeats. Based on Resonance Images performed in 27 patients we found association between ataxia severity and GMV in "sensoriomotor" cerebellum, as well as correlations of impaired verbal memory and semantic fluency scores with GMV in association cortices, including the right parahippocampal gyrus. To our knowledge, this is the first report of deficits in the organization of semantic information and in the evocation of verbal material, as well as greater susceptibility to proactive interference in SCA7 patients. These findings bring novel information about specific cognitive abilities in SCA7 patients, particularly verbal memory and fluency, and their relation with GMV variations in circumscribed brain regions, including association cortices known to have functional relationships with the cerebellum.

No Thumbnail Available
Publication

Montreal Cognitive Assessment (MoCA) performance in Huntington’s disease patients correlates with cortical and caudate atrophy

2022 , Ramirez-Garcia, Gabriel , Gálvez , Víctor , Diaz, Rosalinda , Campos-Romo, Aurelio , Fernandez-Ruiz, Juan

Huntington's Disease (HD) is an autosomal neurodegenerative disease characterized by motor, cognitive, and psychiatric symptoms. Cognitive impairment develops gradually in HD patients, progressing later into a severe cognitive dysfunction. The Montreal Cognitive Assessment (MoCA) is a brief screening test commonly employed to detect mild cognitive impairment, which has also been useful to assess cognitive decline in HD patients. However, the relationship between MoCA performance and brain structural integrity in HD patients remains unclear. Therefore, to explore this relationship we analyzed if cortical thinning and subcortical nuclei volume differences correlated with HD patients' MoCA performance. Twenty-two HD patients and twenty-two healthy subjects participated in this study. T1-weighted images were acquired to analyze cortical thickness and subcortical nuclei volumes. Group comparison analysis showed a significantly lower score in the MoCA global performance of HD patients. Also, the MoCA total score correlated with cortical thinning of fronto-parietal and temporo-occipital cortices, as well as with bilateral caudate volume differences in HD patients. These results provide new insights into the effectiveness of using the MoCA test to detect cognitive impairment and the brain atrophy pattern associated with the cognitive status of prodromal/early HD patients.