Show simple item record

dc.contributor.authorLeyva Ríos, Karla
dc.contributor.authorPacheco-Alvarez, Diana
dc.date.accessioned2018-10-10T16:17:32Z
dc.date.available2018-10-10T16:17:32Z
dc.date.issued2018
dc.identifier.citationMurillo de Ozores, A. R., Rodríguez Gama, A., Bazúa Valenti, S., Leyva Ríos, K., Vázquez N., Pacheco Álvarez, D. … y Castañeda Bueno, M. (2018). C-terminally truncated, kidney-specific variants of the WNK4 kinase lack several sites that regulate its activity. Journal of Biological Chemistry, 293, (31), 12209-12221. DOI: 10.1074/jbc.RA118.003037es_ES, en_US
dc.identifier.issn0021-9258es_ES, en_US
dc.identifier.otherCampus Ciudad de Méxicoes_ES, en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12552/4703
dc.identifier.urihttp://dx.doi.org/10.1074/jbc.RA118.003037
dc.description.abstractWNK lysine-deficient protein kinase 4 (WNK4) is an important regulator of renal salt handling. Mutations in its gene cause pseudohypoaldosteronism type II, mainly arising from overac-tivation of the renal Na/Cl cotransporter (NCC). In addition to full-length WNK4, we have observed faster migrating bands (between 95 and 130 kDa) in Western blots of kidney lysates. Therefore, we hypothesized that these could correspond to uncharacterized WNK4 variants. Here, using several WNK4 antibodies and WNK4/ mice as controls, we showed that these bands indeed correspond to short WNK4 variants that are not observed in other tissue lysates. LC-MS/MS confirmed these bands as WNK4 variants that lack C-terminal segments. In HEK293 cells, truncation of WNK4’s C terminus at several positions increased its kinase activity toward Ste20-related proline/ alanine-rich kinase (SPAK), unless the truncated segment included the SPAK-binding site. Of note, this gain-of-function effect was due to the loss of a protein phosphatase 1 (PP1)-bind-ing site in WNK4. Cotransfection with PP1 resulted in WNK4 dephosphorylation, an activity that was abrogated in the PP1-binding site WNK4 mutant. The electrophoretic mobility of the in vivo short variants of renal WNK4 suggested that they lack the SPAK-binding site and thus may not behave as constitutively active kinases toward SPAK. Finally, we show that at least one of the WNK4 short variants may be produced by proteolysis involving a Zn2-dependent metalloprotease, as recombinant full-length WNK4 was cleaved when incubated with kidney lysate. © 2018 American Society for Biochemistry and Molecular Biology Inc. All rights reserved.es_ES, en_US
dc.description.statementofresponsibilityInvestigadoreses_ES, en_US
dc.description.statementofresponsibilityEstudiantes
dc.description.statementofresponsibilityMaestros
dc.description.tableofcontentsCiencias de la Saludes_ES, en_US
dc.languageenges_ES, en_US
dc.publisherAmerican Society for Biochemistry and Molecular Biology Inc.es_ES, en_US
dc.relationVersión del autores_ES, en_US
dc.relation.ispartofREPOSITORIO SCRIPTAes_ES, en_US
dc.relation.ispartofOPENAIREes_ES, en_US
dc.rightsAcceso Abiertoes_ES, en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0es_ES, en_US
dc.rights.urihttp://www.sherpa.ac.uk/romeo/issn/0021-9258/es/
dc.sourceJournal of Biological Chemistry
dc.subjectAmino acidses_ES, en_US
dc.subjectElectrophoretic mobilityes_ES, en_US
dc.subjectC-terminal segmentses_ES, en_US
dc.subjectCo-transfectionses_ES, en_US
dc.subjectConstitutively activeses_ES, en_US
dc.subjectDephosphorylationses_ES, en_US
dc.subjectGain-of functiones_ES, en_US
dc.subjectKinase activityes_ES, en_US
dc.subjectMetallo-proteasees_ES, en_US
dc.subjectProtein phosphatase-1es_ES, en_US
dc.subjectEnzymeses_ES, en_US
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUDes_ES, en_US
dc.titleC-terminally truncated, kidney-specific variants of the WNK4 kinase lack several sites that regulate its activityes_ES, en_US
dc.typeArtículoes_ES, en_US
dcterms.bibliographicCitationKahle, K. T., Gimenez, I., Hassan, H., Wilson, F. H., Wong, R. D., Forbush, B., Aronson, P. S., and Lifton, R. P. (2004) WNK4 regulates apical and basolateral Cl- flux in extrarenal epithelia. Proc. Natl. Acad. Sci. U. S. A. 101, 2064–9
dcterms.bibliographicCitationWilson, F. H., Disse-Nicodème, S., Choate, K. A., Ishikawa, K., Nelson-Williams, C., Desitter, I.,Gunel, M., Milford, D. V, Lipkin, G. W., Achard, J. M., Feely, M. P., Dussol, B., Berland, Y., Unwin, R. J., Mayan, H., Simon, D. B., Farfel, Z., Jeunemaitre, X., Lifton, R. P., Mosterd, A., Lifton, R. P., Gharavi, A. G., Geller, D. S., Paver, W. K., Pauline, G. J., Schambelan, M., Sebastian, A., Rector, F. C., Take, C., Ikeda, K., Kurasawa, T., Kurokawa, K., Mansfield, T. A., Disse-Nicodème, S., Xu, B., Farfel, Z., Lee, M. R., Ball, S. G., Thomas, T. H., Morgan, D. B., Lee, M. R., Morgan, D. B., Baz, M., Madara, J. L., Simon, D. B., Schuster, V. L., Stokes, J. B.,Levy, D., Julier, C., Baima, J., Lathrop, G. M., Lupas, A., Dyke, M. Van, and Stock, J. (2001) Human hypertension caused by mutations in WNK kinases. Science. 293, 1107–12
dcterms.bibliographicCitationGrimm, P. R., Coleman, R., Delpire, E., and Welling, P. A. (2017) Constitutively Active SPAK Causes Hyperkalemia by Activating NCC and Remodeling Distal Tubules. J Am Soc Nephrol. 28,1–10
dcterms.bibliographicCitationLalioti, M. D., Zhang, J., Volkman, H. M., Kahle, K. T., Hoffmann, K. E., Toka, H. R., Nelson-Williams, C., Ellison, D. H., Flavell, R., Booth, C. J., Lu, Y., Geller, D. S., and Lifton, R. P.(2006) Wnk4 controls blood pressure and potassium homeostasis via regulation of mass and activity of the distal convoluted tubule. Nat. Genet. 38, 1124–1132
dcterms.bibliographicCitationZhang, C., Wang, L., Su, X.-T., Zhang, J., Lin, D.-H., and Wang, W.-H. (2016) ENaC and ROMK activity are inhibited in the DCT2/CNT of TgWnk4PHAII mice. Am. J. Physiol. - Ren. Physiol. 312, F622–F688
dcterms.bibliographicCitationShibata, S., Zhang, J., Puthumana, J., Stone, K. L., and Lifton, R. P. (2013) Kelch-like 3 and Cullin 3 regulate electrolyte homeostasis via ubiquitination and degradation of WNK4. Proc. Natl. Acad. Sci. 110, 7838–7843
dcterms.bibliographicCitationWakabayashi, M., Mori, T., Isobe, K., Sohara, E., Susa, K., Araki, Y., Chiga, M., Kikuchi, E., Nomura, N., Mori, Y., Matsuo, H., Murata, T., Nomura, S., Asano, T., Kawaguchi, H., Nonoyama, S., Rai, T., Sasaki, S., and Uchida, S. (2013) Impaired KLHL3-mediated ubiquitination of WNK4 causes human hypertension. Cell Rep. 3, 858–868
dcterms.bibliographicCitationCastaneda-Bueno, M., Cervantes-Perez, L. G., Vazquez, N., Uribe, N., Kantesaria, S., Morla, L., Bobadilla, N. A., Doucet, A., Alessi, D. R., and Gamba, G. (2012) Activation of the renal Na+:Clcotransporter by angiotensin II is a WNK4-dependent process. Proc. Natl. Acad. Sci. 109, 7929–7934
dcterms.bibliographicCitationPacheco-Alvarez, D., San Cristóbal, P., Meade, P., Moreno, E., Vazquez, N., Muñoz, E., Díaz, A.,Juárez, M. E., Giménez, I., and Gamba, G. (2006) The Na+:Cl- cotransporter is activated and phosphorylated at the amino-terminal domain upon intracellular chloride depletion. J. Biol. Chem. 281, 28755–28763
dcterms.bibliographicCitationRichardson, C., Rafiqi, F. H., Karlsson, H. K. R., Moleleki, N., Vandewalle, A., Campbell, D. G., Morrice, N. A., and Alessi, D. R. (2008) Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1. J. Cell Sci. 121, 675–684
dcterms.bibliographicCitationKahle, K. T., Wilson, F. H., Leng, Q., Lalioti, M. D., O’Connell, A. D., Dong, K., Rapson, A. K., MacGregor, G. G., Giebisch, G., Hebert, S. C., and Lifton, R. P. (2003) WNK4 regulates the balance between renal NaCl reabsorption and K+ secretion. Nat. Genet. 35, 372–376
dcterms.bibliographicCitationRing, A. M., Cheng, S. X., Leng, Q., Kahle, K. T., Rinehart, J., Lalioti, M. D., Volkman, H. M., Wilson, F. H., Hebert, S. C., and Lifton, R. P. (2007) WNK4 regulates activity of the epithelial Na+ channel in vitro and in vivo. Proc. Natl. Acad. Sci. U. S. A. 104, 4020–4024
dcterms.bibliographicCitationPiala, A. T., Moon, T. M., Akella, R., He, H., Cobb, M. H., and Goldsmith, E. J. (2014) Chloride Sensing by WNK1 Involves Inhibition of Autophosphorylation. Sci. Signal. 7, ra41-ra41
dcterms.bibliographicCitationBazua-Valenti, S., Chavez-Canales, M., Rojas-Vega, L., Gonzalez-Rodriguez, X., Vazquez, N., Rodriguez-Gama, A., Argaiz, E. R., Melo, Z., Plata, C., Ellison, D. H., Garcia-Valdes, J., Hadchouel, J., and Gamba, G. (2015) The Effect of WNK4 on the Na+-Cl- Cotransporter Is Modulated by Intracellular Chloride. J. Am. Soc. Nephrol. 26, 1781–1786
dcterms.bibliographicCitationTerker, A. S., Zhang, C., McCormick, J. A., Lazelle, R. A., Zhang, C., Meermeier, N. P., Siler, D. A., Park, H. J., Fu, Y., Cohen, D. M., Weinstein, A. M., Wang, W. H., Yang, C. L., and Ellison, D. H. (2015) Potassium modulates electrolyte balance and blood pressure through effects on distal cell voltage and chloride. Cell Metab. 21, 39–50
dcterms.bibliographicCitationShibata, S., Arroyo, J. P., Castaneda-Bueno, M., Puthumana, J., Zhang, J., Uchida, S., Stone, K. L., Lam, T. T., and Lifton, R. P. (2014) Angiotensin II signaling via protein kinase C phosphorylates Kelch-like 3, preventing WNK4 degradation. Proc. Natl. Acad. Sci. 111, 15556– 15561
dcterms.bibliographicCitationSan-Cristobal, P., Ponce-Coria, J., Vázquez, N., Bobadilla, N. A., and Gamba, G. (2008) WNK3 and WNK4 amino-terminal domain defines their effect on the renal Na ϩ -Cl Ϫ cotransporter. Am J Physiol Ren. Physiol. 295, 1199–1206
dcterms.bibliographicCitationYang, C. L., Zhu, X., Wang, Z., Subramanya, A. R., and Ellison, D. H. (2005) Mechanisms of WNK1 and WNK4 interaction in the regulation of thiazide-sensitive NaCl cotransport. J. Clin. Invest. 115, 1379–1387
dcterms.bibliographicCitationRing, A. M., Leng, Q., Rinehart, J., Wilson, F. H., Kahle, K. T., Hebert, S. C., and Lifton, R. P. (2007) An SGK1 site in WNK4 regulates Na+ channel and K+ channel activity and has implications for aldosterone signaling and K+ homeostasis. Proc. Natl. Acad. Sci. U. S. A. 104, 4025–4029
dcterms.bibliographicCitationGagnon, K. B., and Delpire, E. (2012) Molecular Physiology of SPAK and OSR1: Two Ste20- Related Protein Kinases Regulating Ion Transport. Physiol. Rev. 92, 1577–1617
dcterms.bibliographicCitationLin, D.-H., Yue, P., Rinehart, J., Sun, P., Wang, Z., Lifton, R., and Wang, W.-H. (2012) Protein phosphatase 1 modulates the inhibitory effect of With-no-Lysine kinase 4 on ROMK channels. Am. J. Physiol. Physiol. 303, F110–F119
dcterms.bibliographicCitationPiechotta, K., Lu, J., and Delpire, E. (2002) Cation chloride cotransporters interact with the stressrelated kinases Ste20-related proline-alanine-rich kinase (SPAK) and oxidative stress response 1 (OSR1). J. Biol. Chem. 277, 50812–50819
dcterms.bibliographicCitationThastrup, J. O., Rafiqi, F. H., Vitari, A. C., Pozo-Guisado, E., Deak, M., Mehellou, Y., and Alessi, D. R. (2012) SPAK/OSR1 regulate NKCC1 and WNK activity: analysis of WNK isoform interactions and activation by T-loop trans-autophosphorylation. Biochem. J. 441, 325–337
dcterms.bibliographicCitationChávez-Canales, M., Zhang, C., Soukaseum, C., Moreno, E., Pacheco-Alvarez, D., Vidal-Petiot, E., Castañeda-Bueno, M., Vázquez, N., Rojas-Vega, L., Meermeier, N. P., Rogers, S., Jeunemaitre, X., Yang, C. L., Ellison, D. H., Gamba, G., and Hadchouel, J. (2014) WNK-SPAKNCC cascade revisited: WNK1 stimulates the activity of the Na-Cl cotransporter via SPAK, an effect antagonized by WNK4. Hypertension. 64, 1047–1053
dcterms.bibliographicCitationWilson, F. H., Kahle, K. T., Sabath, E., Lalioti, M. D., Rapson, A. K., Hoover, R. S., Hebert, S. C., Gamba, G., and Lifton, R. P. (2003) Molecular pathogenesis of inherited hypertension with hyperkalemia: the Na-Cl cotransporter is inhibited by wild-type but not mutant WNK4. Proc. Natl. Acad. Sci. U. S. A. 100, 680–4
dcterms.bibliographicCitationPonce-Coria, J., Markadieu, N., Austin, T. M., Flammang, L., Rios, K., Welling, P. A., and Delpire, E. (2014) A novel Ste20-related Proline/Alanine-rich Kinase (SPAK)-independent pathway involving Calcium-binding Protein 39 (Cab39) and Serine Threonine Kinase with No Lysine Member 4 (WNK4) in the activation of Na-K-Cl cotransporters. J. Biol. Chem. 289, 17680–17688
dcterms.bibliographicCitationShi, Y. (2009) Serine/Threonine Phosphatases: Mechanism through Structure. Cell. 139, 468–484
dcterms.bibliographicCitationMcCormick, J. A., Mutig, K., Nelson, J. H., Saritas, T., Hoorn, E. J., Yang, C. L., Rogers, S., Curry, J., Delpire, E., Bachmann, S., and Ellison, D. H. (2011) A SPAK isoform switch modulates renal salt transport and blood pressure. Cell Metab. 14, 352–364
dcterms.bibliographicCitationMarkadieu, N., Rios, K., Spiller, B. W., McDonald, W. H., Welling, P. A., and Delpire, E. (2014) Short forms of Ste20-related proline/alanine-rich kinase (SPAK) in the kidney are created by aspartyl aminopeptidase (Dnpep)-mediated proteolytic cleavage. J. Biol. Chem. 289, 29273–29284
dcterms.bibliographicCitationScotto–Lavino, E., Du, G., and Frohman, M. A. (2007) 3′ End cDNA amplification using classic RACE. Nat. Protoc. 1, 2742–2745
dcterms.bibliographicCitationArvaniti, E., Moulos, P., Vakrakou, A., Chatziantoniou, C., Chadjichristos, C., Kavvadas, P., Charonis, A., and Politis, P. K. (2016) Whole-transcriptome analysis of UUO mouse model of renal fibrosis reveals new molecular players in kidney diseases. Sci. Rep. 6, 26235
dcterms.bibliographicCitationBeynon, R; Bond, J. S. (2000) Proteolytic Enzymes, 2nd Ed., Oxford University Press, England
dcterms.bibliographicCitationXiao, Y., Pollack, D., Nieves, E., Winchell, A., Callaway, M., and Vigodner, M. (2015) Can your protein be sumoylated? A quick summary and important tips to study SUMO-modified proteins. Anal. Biochem. 477, 95–97
dcterms.bibliographicCitationIshizawa, K., Xu, N., Loffing, J., Lifton, R. P., Fujita, T., Uchida, S., and Shibata, S. (2016) Potassium depletion stimulates Na-Cl cotransporter via phosphorylation and inactivation of the ubiquitin ligase Kelch-like 3. Biochem. Biophys. Res. Commun. 480, 745–751
dcterms.bibliographicCitationArgaiz, E. R., Chavez-Canales, M., Rodriguez-Gama, A., Vazquez, N., Hadchouel, J., Ellison, D. H., and Gamba, G. (2016) The Kidney Specific WNK1 Isoform (KS-WNK1) Is a Potent Activator of WNK4 and NCC. J. Am. Soc. Nephrol. 27, 60 (Meeting abstract)
dcterms.bibliographicCitationCorrea, L. M., Cho, C., Myles, D. G., and Primakoff, P. (2000) A Role for a TIMP-3-Sensitive, Zn2+-Dependent Metalloprotease in Mammalian Gamete Membrane Fusion. Dev. Biol. 225, 124–134
dcterms.bibliographicCitationKoumangoye, R., and Delpire, E. (2017) DNPEP is not the only peptidase that produces SPAK fragments in kidney. Physiol. Rep. 5, 1–9
dcterms.bibliographicCitationWilliams, C. R., Mistry, M., Mallick, R., Mistry, A., Ko, B., Gooch, J. L., and Hoover, R. S. (2017) Sodium Chloride Cotransporter Upregulation in Settings of Zinc Deficiency Offers New Insight into Blood Pressure Dysregulation in Chronic Diseases. FASEB J. . 31, 855.1-855.1
dcterms.bibliographicCitationde Los Heros, P., Kahle, K. T., Rinehart, J., Bobadilla, N. A., Vázquez, N., San Cristobal, P., Mount, D. B., Lifton, R. P., Hebert, S. C., and Gamba, G. (2006) WNK3 bypasses the tonicity requirement for K-Cl cotransporter activation via a phosphatase-dependent pathway. Proc. Natl. Acad. Sci. U. S. A. 103, 1976–81
dcterms.bibliographicCitationFrenette-Cotton, R., Marcoux, A.-A., Garneau, A. P., Noel, M., and Isenring, P. (2017) Phosphoregulation of K + -Cl − Cotransporters During Cell Swelling: Novel Insights. J. Cell. Physiol. 10.1002/jcp.25899
dcterms.bibliographicCitationCastañeda-Bueno, M., Arroyo, J. P., Zhang, J., Puthumana, J., Yarborough, O., Shibata, S., Rojas- Vega, L., Gamba, G., Rinehart, J., and Lifton, R. P. (2017) Phosphorylation by PKC and PKA regulate the kinase activity and downstream signaling of WNK4. Proc. Natl. Acad. Sci. 114, E879–E886
dcterms.bibliographicCitationYang, C. L., Liu, X., Paliege, A., Zhu, X., Bachmann, S., Dawson, D. C., and Ellison, D. H. (2007) WNK1 and WNK4 modulate CFTR activity. Biochem. Biophys. Res. Commun. 353, 535–540
dcterms.bibliographicCitationRafiqi, F. H., Zuber, A. M., Glouer, M., Richardson, C., Fleming, S., Jouanouić, S., Jouanouić, A., Kevin, M. O. S., and Alessi, D. R. (2010) Role of the WNK-activated SPAK kinase in regulating blood pressure. EMBO Mol. Med. 2, 63–75
dcterms.bibliographicCitationMarkadieu, N., San-Cristobal, P., Nair, A. V., Verkaart, S., Lenssen, E., Tudpor, K., van Zeeland, F., Loffing, J., Bindels, R. J. M., and Hoenderop, J. G. J. (2012) A primary culture of distal convoluted tubules expressing functional thiazide-sensitive NaCl transport. Am. J. Physiol. - Ren. Physiol. 303, F886–F892
dcterms.bibliographicCitationKrishnan, N., Lam, T. T., Fritz, A., Rempinski, D., O’Loughlin, K., Minderman, H., Berezney, R., Marzluff, W. F., and Thapar, R. (2012) The Prolyl Isomerase Pin1 Targets Stem-Loop Binding Protein (SLBP) To Dissociate the SLBP-Histone mRNA Complex Linking Histone mRNA Decay with SLBP Ubiquitination. Mol. Cell. Biol. 32, 4306–4322
dcterms.bibliographicCitationLi, C., Wen, A., Shen, B., Lu, J., Huang, Y., and Chang, Y. (2011) FastCloning: a highly simplified, purification-free, sequence- and ligation-independent PCR cloning method. BMC Biotechnol. 11, 92


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Acceso Abierto
Except where otherwise noted, this item's license is described as Acceso Abierto