Show simple item record

dc.contributor.authorÁlvarez, Víctor M.
dc.contributor.authorSánchez-Gómez, Claudia
dc.contributor.authorGutiérrez, Sebastián
dc.contributor.authorDomínguez Soberanes, Julieta
dc.contributor.authorVelázquez, Ramiro
dc.contributor.otherCampus Aguascalientes
dc.identifier.citationÁlvarez, V. M., Sánchez Gómez, C. N., Gutiérrez Calderón, J. S. Dominguez-Soberanes, J. y Velázquez Guerrero, R. (2018). Facial emotion recognition: a comparison of different Landmark-based Classifiers. En: 2018 International Conference on Research in Intelligent and Computing in Engineering (RICE), San Salvador, 2018, (pp. 1-4). DOI: 10.1109/RICE.2018.8509048es_ES, en_US
dc.identifier.isbn9781538625996es_ES, en_US
dc.description.abstractAs stated by Ekman in his Facial Action Coding System (FACS), facial expressions can be interpreted as the activation of different sets of facial muscles. This recognition skill, however, demands extensive training and is indeed time consuming. Consequently, there have been many attempts to automate this process. In this paper, after applying common face detection and alignment algorithms to the Cohn-Kanade dataset, we fed a group of emotion-labeled landmarks to different classifiers in order to compare their results. The multilayer perceptron classifier showed the best performance with an average accuracy of 89%. © 2018 IEEE.es_ES, en_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.es_ES, en_US
dc.relationVersión del editores_ES, en_US
dc.relation.ispartofREPOSITORIO SCRIPTAes_ES, en_US
dc.relation.ispartofOPENAIREes_ES, en_US
dc.rightsAcceso Cerradoes_ES, en_US
dc.rights.uri, en_US
dc.sourceProceedings of the 2018 3rd IEEE International Conference on Research in Intelligent and Computing in Engineering, RICE 2018
dc.subjectClassifieres_ES, en_US
dc.subjectFacial expression recognitiones_ES, en_US
dc.subjectLandmark detectiones_ES, en_US
dc.subjectMultilayer perceptrones_ES, en_US
dc.subjectSupervised learning techniqueses_ES, en_US
dc.subjectClassification (of information)es_ES, en_US
dc.subjectComputer keyboardses_ES, en_US
dc.subjectIntelligent computinges_ES, en_US
dc.subjectMultilayer neural networkses_ES, en_US
dc.subjectMultilayerses_ES, en_US
dc.subjectSupervised learninges_ES, en_US
dc.subjectAlignment algorithmses_ES, en_US
dc.subjectFacial action coding systemes_ES, en_US
dc.subjectFacial emotionses_ES, en_US
dc.subjectFacial expression recognitiones_ES, en_US
dc.subjectFacial expressionses_ES, en_US
dc.subjectFacial muscleses_ES, en_US
dc.subjectLandmark detectiones_ES, en_US
dc.subjectMulti-layer perceptron classifierses_ES, en_US
dc.subjectFace recognitiones_ES, en_US
dc.subject.classificationINGENIERÍA Y TECNOLOGÍAes_ES, en_US
dc.subject.classificationCIENCIAS SOCIALES
dc.subject.classificationAdministración de Instituciones
dc.titleFacial emotion recognition : a comparison of different landmark-based classifierses_ES, en_US
dc.typeContribución a congresoes_ES, en_US
dcterms.bibliographicCitationG. Donato, M. S. Bartlett, J. C. Hager, P. Ekman, T. J. Sejnowski, "Classifying facial actions", Transactions on Pattern Analysis and Machine Intelligence, vol. 21, no. 10, pp. 974-989, 1999.
dcterms.bibliographicCitationK.A. Leitch, S.E. Duncan, S. O'Keefe, R. Rudd, D.L. Gallagher, "Characterizing consumer emotional response to sweeteners using an emotion terminology questionnaire and facial expression analysis", Food Research International, vol. 76, no. 2, pp. 283-292, 2015.
dcterms.bibliographicCitationL. Danner, S. Haindl, M. Joechl, K. Duerrschmid, "Facial expressions and autonomous nervous system responses elicited by tasting different juices", Food Research International, vol. 64, pp. 81-90, 2014.
dcterms.bibliographicCitationG. Juodeikiene, L. Basinskiene, D. Vidmantiene, D. Klupsaite, E. Bartkiene, "The use of face reading technology to predict consumer acceptance of confectionery products", Food for Consumer Well-Being 9th Baltic Conference on Food Science and Technology, pp. 276-279, 2014.
dcterms.bibliographicCitationH.A. Chapman, D.H. Lee, J.M. Susskind, M.S. Bartlett, A.K. Anderson, "The face of distaste: a preliminary study", Chemical senses, vol. 42, no. 6, pp. 457-463, 2017.
dcterms.bibliographicCitationN.B. Kar, K.S. Babu, S.K. Jena, "Face expression recognition using histograms of oriented gradients with reduced features", Advances in Intelligent Systems and Computing 460, pp. 209-219, 2017.
dcterms.bibliographicCitationH.H. Tsai, Y.C. Chang, "Facial expression recognition using a combination of multiple facial features and support vector machine", Soft Computing, pp. 1-17, 2017.
dcterms.bibliographicCitationV.M. Alvarez, R. Velazquez, "Aproximacion al reconocimiento de emociones faciales basado en posicion de puntos de interes", Pistas Educativas, vol. 39, no. 128, pp. 131-141, 2017.
dcterms.bibliographicCitationS. Poria, E. Cambria, R. Bajpai, A. L. Hussain, "A review of affective computing: from unimodal analysis to multimodal fusion", Information Fusion, vol. 37, pp. 98-125, 2017.
dcterms.bibliographicCitationE.P. Koster, "Diversity in the determinants of food choice: A psychological perspective", Food Quality and Preference, vol. 20, no. 2, pp. 70-82, 2009.
dcterms.bibliographicCitationP. Rozin, A.E. Fallen, "A Perspective on Disgust", Psychological Review, vol. 94, no. 1, pp. 23-41, 1987.
dcterms.bibliographicCitationP. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, I. Matthews, "The Extended Cohn-Kanade Dataset (CK+): A complete dataset for action unit and emotion-specified expression", IEEE Computer Society Conference on Computer Vision and Pattern Recognition-Workshops, pp. 94-101, 2010.
dcterms.bibliographicCitationV. Kazemi, J. Sullivan, "One millisecond face alignment with an ensemble of regression trees", IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867-1874, 2014.
dcterms.bibliographicCitationD.E. King, "Dlib-ml: A Machine Learning Toolkit", Journal of Machine Learning Research, vol. 10, pp. 1755-1758, 2009.
dcterms.bibliographicCitationC. Sanchez, M. Rivera, R. Velazquez, "Robust Multiband Image Segmentation Method based on User Clues", Proc. of IEEE Central America and Panama Convention (CONCAPAN XXXVII), pp. 1-6, 2017.
dcterms.bibliographicCitationE. Pissaloux, S. Maybank, R. Velazquez, A. Chatterjee, H. Nobahari, P. Siarry, "On image matching and feature tracking for embedded systems: a state of the art" in Advances in Heuristic Signal Processing and Applications, Berlin-Heidelberg: Springer, pp. 357-380, 2013.

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Acceso Cerrado
Except where otherwise noted, this item's license is described as Acceso Cerrado