Show simple item record

dc.contributor.authorMartinez-Villaseñor, Lourdes
dc.contributor.authorPonce, Hiram
dc.contributor.authorMarmolejo-Saucedo, José-Antonio
dc.contributor.otherCampus Ciudad de México
dc.coverage.spatialMéxico
dc.creatorMARÍA DE LOURDES GUADALUPE MARTÍNEZ VILLASEÑOR;241561
dc.creatorHIRAM EREDIN PONCE ESPINOSA;376768
dc.creatorJOSE ANTONIO MARMOLEJO SAUCEDO;174160
dc.date.accessioned2019-05-23T19:51:50Z
dc.date.available2019-05-23T19:51:50Z
dc.date.issued2018
dc.identifier.citationMartínez Villaseñor, M. de L. G.,Ponce Espinosa, H. E., Marmolejo Saucedo, J. A., Ramírez, J. M. y Hernández A. (2018). A genetic algorithm to solve power system expansion planning with renewable energy En: Batyrshin I., Martínez-Villaseñor M., Ponce Espinosa H. (editores). 17th Mexican International Conference on Artificial Intelligence, MICAI 2018, Guadalajara, Mexico, October 22-27, 2018, proceedings, Advances in computational intelligence, (Lecture Notes in Computer Science, vol. 11288), (pp. 3-17). Cham : Springer. DOI: 10.1007/978-3-030-04491-6_1es_ES, en_US
dc.identifier.isbn9783030028367es_ES, en_US
dc.identifier.issn0302-9743es_ES, en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12552/4841
dc.identifier.urihttp://dx.doi.org/10.1007/978-3-030-04491-6_1
dc.description.abstractIn this paper, a deterministic dynamic mixed-integer programming model for solving the generation and transmission expansion-planning problem is addressed. The proposed model integrates conventional generation with renewable energy sources and it is based on a centralized planned transmission expansion. Due a growing demand over time, it is necessary to generate expansion plans that can meet the future requirements of energy systems. Nowadays, in most systems a public entity develops both the short and long of electricity-grid expansion planning and mainly deterministic methods are employed. In this study, an heuristic optimization approach based on genetic algorithms is presented. Numerical results show the performance of the proposed algorithm. © 2018, Springer Nature Switzerland AG.es_ES, en_US
dc.language.isoeng
dc.publisherSpringer Verlages_ES, en_US
dc.relation.ispartofREPOSITORIO SCRIPTAes_ES, en_US
dc.relation.ispartofOPENAIREes_ES, en_US
dc.relation.ispartofseriesLecture Notes in Computer Science
dc.rightsAcceso Embargadoes_ES, en_US
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0es_ES, en_US
dc.rights.urihttp://www.sherpa.ac.uk/romeo/issn/0302-9743/
dc.source17th Mexican International Conference on Artificial Intelligence, MICAI 2018, Guadalajara, Mexico, October 22-27, 2018, proceedings, Advances in computational intelligence
dc.subjectGeneration and transmission problemes_ES, en_US
dc.subjectGenetic algorithmses_ES, en_US
dc.subjectPower system planninges_ES, en_US
dc.subjectArtificial intelligencees_ES, en_US
dc.subjectElectric power transmissiones_ES, en_US
dc.subjectGenetic algorithmses_ES, en_US
dc.subjectHeuristic algorithmses_ES, en_US
dc.subjectInteger programminges_ES, en_US
dc.subjectRenewable energy resourceses_ES, en_US
dc.subjectSoft computinges_ES, en_US
dc.subjectConventional generationes_ES, en_US
dc.subjectHeuristic optimizationes_ES, en_US
dc.subjectMixed integer programming modeles_ES, en_US
dc.subjectPower system expansion planninges_ES, en_US
dc.subjectPower system planninges_ES, en_US
dc.subjectRenewable energy sourcees_ES, en_US
dc.subjectTransmission expansion planninges_ES, en_US
dc.subjectTransmission problemes_ES, en_US
dc.subjectElectric power system planninges_ES, en_US
dc.subject.classificationINGENIERÍA Y TECNOLOGÍAes_ES, en_US
dc.subject.classificationIngeniería
dc.titleA genetic algorithm to solve power system expansion planning with renewable energyes_ES, en_US
dc.typeContribución a congresoes_ES, en_US
dcterms.audienceInvestigadores
dcterms.audienceEstudiantes
dcterms.audienceMaestros
dcterms.bibliographicCitationAbbasi, A.R., Seifi, A.R.: Energy expansion planning by considering electrical and thermal expansion simultaneously. Energy Convers. Manag. 83, 9–18 (2014)
dcterms.bibliographicCitationAlizadeh, B., Jadid, S.: Reliability constrained coordination of generation and transmission expansion planning in power systems using mixed integer programming. IET Gener., Transm. Distrib. 5(9), 948–960 (2011)
dcterms.bibliographicCitationBarati, F., Seifi, H., Sepasian, M.S., Nateghi, A., Shafie-khah, M., Catalão, J.P.: Multi-period integrated framework of generation, transmission, and natural gas grid expansion planning for large-scale systems. IEEE Trans. Power Syst. 30(5), 2527–2537 (2015)
dcterms.bibliographicCitationBlum, C., Puchinger, J., Raidl, G.R., Roli, A.: Hybrid metaheuristics in combinatorial optimization: a survey. Appl. Soft Comput. 11(6), 4135–4151 (2011)
dcterms.bibliographicCitationBussieck, M.R., Meeraus, A.: General algebraic modeling system (GAMS). In: Kallrath, J. (ed.) Modeling Languages in Mathematical Optimization. APOP, vol. 88, pp. 137–157. Springer, Boston (2004). https://doi.org/10.1007/978-1-4613-0215-5_8
dcterms.bibliographicCitationCadini, F., Zio, E., Petrescu, C.A.: Optimal expansion of an existing electrical power transmission network by multi-objective genetic algorithms. Reliab. Eng. Syst. Saf. 95(3), 173–181 (2010)
dcterms.bibliographicCitationChen, S.L., Zhan, T.S., Tsay, M.T.: Generation expansion planning of the utility with refined immune algorithm. Electr. Power Syst. Res. 76(4), 251–258 (2006)
dcterms.bibliographicCitationConejo, A., Baringo, L., Kazempour, S., Siddiqui, A.: Investment in Electricity Generation and Transmission: Decision Making under Uncertainty, 1st edn. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-319-29501-5
dcterms.bibliographicCitationCortes-Carmona, M., Palma-Behnke, R., Moya, O.: Transmission network expansion planning by a hybrid simulated annealing algorithm. In: 2009 15th International Conference on Intelligent System Applications to Power Systems, ISAP 2009, pp. 1–7. IEEE (2009)
dcterms.bibliographicCitationFaria, H., Binato, S., Resende, M.G., Falcão, D.M.: Power transmission network design by greedy randomized adaptive path relinking. IEEE Trans. Power Syst. 20(1), 43–49 (2005)
dcterms.bibliographicCitationFortin, F.A., De Rainville, F.M., Gardner, M.A., Parizeau, M., Gagné, C.: DEAP: evolutionary algorithms made easy. J. Mach. Learn. Res. 13, 2171–2175 (2012)
dcterms.bibliographicCitationGallego, R., Monticelli, A., Romero, R.: Transmision system expansion planning by an extended genetic algorithm. IEE Proc.-Gener., Transm. Distrib. 145(3), 329–335 (1998)
dcterms.bibliographicCitationGallego, R.A., Romero, R., Monticelli, A.J.: Tabu search algorithm for network synthesis. IEEE Trans. Power Syst. 15(2), 490–495 (2000)
dcterms.bibliographicCitationHaupt, R.L., Haupt, S.E., Haupt, S.E.: Practical Genetic Algorithms, vol. 2. Wiley, New York (1998)
dcterms.bibliographicCitationHemmati, R., Hooshmand, R.A., Khodabakhshian, A.: State-of-the-art of transmission expansion planning: comprehensive review. Renew. Sustain. Energy Rev. 23, 312–319 (2013)
dcterms.bibliographicCitationHemmati, R., Hooshmandd, R.A., Khodabakhshian, A.: Comprehensive review of generation and transmission expansion planning. IET Gener., Transm. Distrib. 7(9), 955–964 (2013)
dcterms.bibliographicCitationJadidoleslam, M., Ebrahimi, A.: Reliability constrained generation expansion planning by a modified shuffled frog leaping algorithm. Int. J. Electr. Power Energy Syst. 64, 743–751 (2015)
dcterms.bibliographicCitationJalilzadeh, S., Shabani, A., Azadru, A.: Multi-period generation expansion planning using genetic algorithm. In: 2010 International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 358–363. IEEE (2010)
dcterms.bibliographicCitationJavadi, M.S., Saniei, M., Mashhadi, H.R., Gutiérrez-Alcaraz, G.: Multi-objective expansion planning approach: distant wind farms and limited energy resources integration. IET Renew. Power Gener. 7(6), 652–668 (2013)
dcterms.bibliographicCitationJin, Y.X., Cheng, H.Z., Yan, J., Zhang, L.: New discrete method for particle swarm optimization and its application in transmission network expansion planning. Electr. Power Syst. Res. 77(3), 227–233 (2007)
dcterms.bibliographicCitationKannan, S., Baskar, S., McCalley, J.D., Murugan, P.: Application of NSGA-II algorithm to generation expansion planning. IEEE Trans. Power Syst. 24(1), 454–461 (2009)
dcterms.bibliographicCitationKhakpoor, M., Jafari-Nokandi, M., Akbar Abdoos, A.: A new hybrid GA-fuzzy optimization algorithm for security-constrained based generation and transmission expansion planning in the deregulated environment. J. Intell. Fuzzy Syst. 33(6), 3789–3803 (2017)
dcterms.bibliographicCitationMoradi, M., Abdi, H., Lumbreras, S., Ramos, A., Karimi, S.: Transmission expansion planning in the presence of wind farms with a mixed AC and DC power flow model using an imperialist competitive algorithm. Electr. Power Syst. Res. 140, 493–506 (2016)
dcterms.bibliographicCitationMotamedi, A., Zareipour, H., Buygi, M.O., Rosehart, W.D.: A transmission planning framework considering future generation expansions in electricity markets. IEEE Trans. Power Syst. 25(4), 1987–1995 (2010)
dcterms.bibliographicCitationMurugan, P., Kannan, S., Baskar, S.: Application of NSGA-II algorithm to single-objective transmission constrained generation expansion planning. IEEE Trans. Power Syst. 24(4), 1790–1797 (2009)
dcterms.bibliographicCitationMurugan, P., Kannan, S., Baskar, S.: NSGA-II algorithm for multi-objective generation expansion planning problem. Electr. Power Syst. Res. 79(4), 622–628 (2009)
dcterms.bibliographicCitationNeshat, N., Amin-Naseri, M.: Cleaner power generation through market-driven generation expansion planning: an agent-based hybrid framework of game theory and particle swarm optimization. J. Clean. Prod. 105, 206–217 (2015)
dcterms.bibliographicCitationPereira, A.J., Saraiva, J.T.: Generation expansion planning (GEP)-a long-term approach using system dynamics and genetic algorithms (GAs). Energy 36(8), 5180–5199 (2011)
dcterms.bibliographicCitationRajesh, K., Bhuvanesh, A., Kannan, S., Thangaraj, C.: Least cost generation expansion planning with solar power plant using differential evolution algorithm. Renew. Energy 85, 677–686 (2016)
dcterms.bibliographicCitationRezende, L.S., Leite da Silva, A.M., de Mello Honório, L.: Artificial immune system applied to the multi-stage transmission expansion planning. In: Andrews, P.S., et al. (eds.) ICARIS 2009. LNCS, vol. 5666, pp. 178–191. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03246-2_19
dcterms.bibliographicCitationRomero, R., Gallego, R., Monticelli, A.: Transmission system expansion planning by simulated annealing. In: 1995 IEEE Proceedings of the Conference on Power Industry Computer Application, pp. 278–283. IEEE (1995)
dcterms.bibliographicCitationSadegheih, A., Drake, P.: System network planning expansion using mathematical programming, genetic algorithms and tabu search. Energy Convers. Manag. 49(6), 1557–1566 (2008)
dcterms.bibliographicCitationSadeghi, H., Rashidinejad, M., Abdollahi, A.: A comprehensive sequential review study through the generation expansion planning. Renew. Sustain. Energy Rev. 67, 1369–1394 (2017)
dcterms.bibliographicCitationSaka, M.P., Hasançebi, O., Geem, Z.W.: Metaheuristics in structural optimization and discussions on harmony search algorithm. Swarm Evol. Comput. 28, 88–97 (2016
dcterms.bibliographicCitationShayeghi, H., Mahdavi, M., Bagheri, A.: Discrete PSO algorithm based optimization of transmission lines loading in TNEP problem. Energy Convers. Manag. 51(1), 112–121 (2010)
dcterms.bibliographicCitationda Silva, A.M.L., Freire, M.R., Honório, L.M.: Transmission expansion planning optimization by adaptive multi-operator evolutionary algorithms. Electr. Power Syst. Res. 133, 173–181 (2016)
dcterms.bibliographicCitationda Silva, A.M.L., Rezende, L.S., da Fonseca Manso, L.A., de Resende, L.C.: Reliability worth applied to transmission expansion planning based on ant colony system. Int. J. Electr. Power Energy Syst. 32(10), 1077–1084 (2010)
dcterms.bibliographicCitationda Silva, E.L., Gil, H.A., Areiza, J.M.: Transmission network expansion planning under an improved genetic algorithm. In: Proceedings of the 21st 1999 IEEE International Conference on Power Industry Computer Applications, PICA 1999, pp. 315–321. IEEE (1999)
dcterms.bibliographicCitationSorensen, K., Sevaux, M., Glover, F.: A history of metaheuristics. arXiv preprint arXiv:1704.00853 (2017)
dcterms.bibliographicCitationVerma, A., Panigrahi, B., Bijwe, P.: Harmony search algorithm for transmission network expansion planning. IET Gener., Transm. Distrib. 4(6), 663–673 (2010)
dcterms.bibliographicCitationYoza, A., Yona, A., Senjyu, T., Funabashi, T.: Optimal capacity and expansion planning methodology of PV and battery in smart house. Renew. Energy 69, 25–33 (2014)
dc.description.versionVersión aceptada


Files in this item

FilesSizeFormatView

There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Acceso Embargado
Except where otherwise noted, this item's license is described as Acceso Embargado