Show simple item record

dc.contributor.authorMoya-Albor, Ernesto
dc.contributor.authorBrieva, Jorge
dc.contributor.otherCampus Ciudad de México
dc.identifier.citationMira, C., Moya Albor, E., Escalante Ramírez, B., Olveres, J., Brieva Rico, J. E. y Vallejo, E. (2019). 3D hermite transform optical flow estimation in left ventricle CT sequences. Sensors, 20 (3). DOI : 10.3390/s20030595en_US
dc.description.abstractHeart diseases are the most important causes of death in the world and over the years, the study of cardiac movement has been carried out mainly in two dimensions, however, it is important to consider that the deformations due to the movement of the heart occur in a three-dimensional space. The 3D + t analysis allows to describe most of the motions of the heart, for example, the twisting motion that takes place on every beat cycle that allows us identifying abnormalities of the heart walls. Therefore, it is necessary to develop algorithms that help specialists understand the cardiac movement. In this work, we developed a new approach to determine the cardiac movement in three dimensions using a differential optical flow approach in which we use the steered Hermite transform (SHT) which allows us to decompose cardiac volumes taking advantage of it as a model of the human vision system (HVS). Our proposal was tested in complete cardiac computed tomography (CT) volumes ( 3D + t), as well as its respective left ventricular segmentation. The robustness to noise was tested with good results. The evaluation of the results was carried out through errors in forwarding reconstruction, from the volume at time t to time t + 1 using the optical flow obtained (interpolation errors). The parameters were tuned extensively. In the case of the 2D algorithm, the interpolation errors and normalized interpolation errors are very close and below the values reported in ground truth flows. In the case of the 3D algorithm, the results were compared with another similar method in 3D and the interpolation errors remained below 0.1. These results of interpolation errors for complete cardiac volumes and the left ventricle are shown graphically for clarity. Finally, a series of graphs are observed where the characteristic of contraction and dilation of the left ventricle is evident through the representation of the 3D optical flow. © 2020 by the authors. Licensee MDPI, Basel, Switzerland.en_US
dc.publisherMDPI AGen_US
dc.relation.ispartofREPOSITORIO SCRIPTA
dc.rightsAcceso Abierto
dc.sourceSensors (Switzerland)
dc.subjectBio-inspired computingen_US
dc.subjectCardiac CT imagingen_US
dc.subjectSteered hermite transformen_US
dc.subjectFlow graphsen_US
dc.subjectMotion estimationen_US
dc.subjectOptical flowsen_US
dc.subjectBio-inspired computingen_US
dc.subjectCardiac CTen_US
dc.subjectCardiac-computed tomographyen_US
dc.subjectDifferential methodsen_US
dc.subjectHermite transformsen_US
dc.subjectHuman vision systemsen_US
dc.subjectOptical flow estimationen_US
dc.subjectThree dimensional spaceen_US
dc.subjectComputerized tomographyen_US
dc.subject.classificationINGENIERÍA Y TECNOLOGÍA
dc.title3D hermite transform optical flow estimation in left ventricle CT sequencesen_US
dcterms.bibliographicCitationWorld Health Organization. Cardiovascular diseases (CVD). 2019. Available online: mediacentre/factsheets/fs317/en/ (accessed on 22 November 2019).
dcterms.bibliographicCitationCheung, Y.F. The role of 3D wall motion tracking in heart failure. Nat. Rev. Cardiol. 2012, 9, 644.
dcterms.bibliographicCitationXiong, G.; Sun, P.P.; Zhou, H.; Ha, S.; o Hartaigh, B.; Truong, Q.A.; Min, J.K. Comprehensive Modeling and Visualization of Cardiac Anatomy and Physiology from CT Imaging and Computer Simulations. IEEE Trans. Vis. Comput. Graph. 2017, 23, 1014–1028.
dcterms.bibliographicCitationMin, J.K.; Shaw, L.; Berman, D. The Present State of Coronary Computed Tomography Angiography A Process in Evolution. Am. Coll. Cardiol. 2010, 55, 957–965.
dcterms.bibliographicCitationSchoenhagen, P.; Stillman, A.; Halliburton, S.; White, R. CT of the heart: Principles, advances, clinical uses. Clevel. Clin. J. Med. 2005, 72, 127–140.
dcterms.bibliographicCitationBarron, J.L.; Fleet, D.J.; Beauchemin, S.S.; Burkitt, T.A. Performance of optical flow techniques. In Proceedings of the 1992 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Champaign, IL, USA, 15–18 June 1992; pp. 236–242.
dcterms.bibliographicCitationNagel, H.H.; Enkelmann, W. An Investigation of Smoothness Constraints for the Estimation of Displacement Vector Fields from Image Sequences. IEEE Trans. Pattern Anal. Mach. Intell. 1986, PAMI-8, 565–593.
dcterms.bibliographicCitationNagel, H.H. Displacement vectors derived from second-order intensity variations in image sequences. Comput. Vis. Graph. Image Process. 1983, 21, 85–117.
dcterms.bibliographicCitationTRETIAK, O. Velocity estimation form image sequences with second order differential operators. In Proceedings of the International Conference on Pattern Recognition, Montreal, QC, Canada, 30 July–2 August 1984
dcterms.bibliographicCitationHaralick, R.M.; Lee, J.S. The Facet Approach to Optic Flow; Technical Report; Virginia Polytechnic Inst and State Univ Blacksburg Dept of Computer Science: Blacksburg, VA, USA, 1983.
dcterms.bibliographicCitationHorn, B.K.P.; Schunck, B.G. Determining Optical Flow. Artif. Intell. 1981, 17, 185–203.
dcterms.bibliographicCitationHildreth, E.C. Computations underlying the measurement of visual motion. Artif. Intell. 1984, 23, 309–354.
dcterms.bibliographicCitationLucas, B.D.; Kanade, T. An Iterative Image Registration Technique with an Application to Stereo Vision. In Proceedings of the 7th International Joint Conference on Artificial Intelligence, Vancouver, BC, Canada, 24–28 August 1981; Morgan Kaufmann Publishers Inc.: San Francisco, CA, USA; Volume 2, pp. 674–679.
dcterms.bibliographicCitationUras, S.; Girosi, F.; Verri, A.; Torre, V. A computational approach to motion perception. Biol. Cybern. 1988, 60, 79–87.
dcterms.bibliographicCitationAnandan, P. A computational framework and an algorithm for the measurement of visual motion. Int. J. Comput. Vis. 1989, 2, 283–310.
dcterms.bibliographicCitationLittle, J.; Bulthoff, H.; Poggio, T. Parallel Optical Flow Using Local Voting; IEEE: New York, NY, USA, 1988; pp. 454–459.
dcterms.bibliographicCitationAdelson, E.H.; Bergen, J.R. Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 1985, 2, 284–299.
dcterms.bibliographicCitationHeeger, D.J. Optical flow using spatiotemporal filters. Int. J. Comput. Vis. 1988, 1, 279–302.
dcterms.bibliographicCitationFleet, D.J.; Jepson, A.D. Computation of component image velocity from local phase information. Int. J. Comput. Vis. 1990, 5, 77–104.
dcterms.bibliographicCitationSun, D.; Roth, S.; Black, M.J. Secrets of optical flow estimation and their principles. In Proceedings of the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 2432–2439.
dcterms.bibliographicCitationHaag, M.; Nagel, H.H. Combination of Edge Element and Optical Flow Estimates for 3D-Model-Based Vehicle Tracking in Traffic Image Sequences. Int. J. Comput. Vis. 1999, 35, 295–319.
dcterms.bibliographicCitationAmat, F.; Myers, E.W.; Keller, P.J. Fast and robust optical flow for time-lapse microscopy using super-voxels. Bioinformatics 2013, 29, 373–380.
dcterms.bibliographicCitationBarranco, F.; Fermüller, C.; Aloimonos, Y.; Ros, E. Joint direct estimation of 3D geometry and 3D motion using spatio temporal gradients. arXiv 2018, arXiv:1805.06641.
dcterms.bibliographicCitationPatil, G.; Suja, P. Emotion recognition from 3D videos using optical flow method. In Proceedings of the 2017 International Conference On Smart Technologies For Smart Nation (SmartTechCon), Bengaluru, India, 17–19 August 2017; pp. 825–829.
dcterms.bibliographicCitationRodriguez, M.P.; Nygren, A. Motion Estimation in Cardiac Fluorescence Imaging With Scale-Space Landmarks and Optical Flow: A Comparative Study. IEEE Trans. Biomed. Eng. 2015, 62, 774–782.
dcterms.bibliographicCitationSaleh, R.H.; Bakr, H.M.A.; Zidan, I.; Hadhoud, M.M.A. An innovate automatic heart localization method in cardiac Cine MRI using optical flow. In Proceedings of the 8th Cairo International Biomedical Engineering Conference (CIBEC), Cairo, Egypt, 15–17 December 2016; pp. 106–109.
dcterms.bibliographicCitationLiu, H.; Hong, T.H.; Herman, M.; Chellappa, R. A General Motion Model and Spatio-Temporal Filters for Computing Optical Flow. Int. J. Comput. Vis. 1997, 22, 141–172.
dcterms.bibliographicCitationSilvan-Cardenas, J.L.; Escalante-Ramirez, B. Optic-flow information extraction with directional Gaussian-derivatives. In Proceedings of the 15th International Conference on Pattern Recognition ICPR-2000, Barcelona, Spain, 3–7 September 2000; Volume 3, pp. 190–193.
dcterms.bibliographicCitationMoya-Albor, E.; Escalante-RamíRez, B.; Vallejo, E. Optical Flow Estimation in Cardiac CT Images Using the Steered Hermite Transform. Image Commun. 2013, 28, 267–291.
dcterms.bibliographicCitationBaghaie, A.; DSouza, R.M.; Yu, Z. Dense correspondence and optical flow estimation using gabor, schmid and steerable descriptors. In International Symposium on Visual Computing; Springer: Cham, Switzerland, 2015; pp. 406–415.
dcterms.bibliographicCitationSatriano, A.; Heydari, B.; Narous, M.; Exner, D.V.; Mikami, Y.; Attwood, M.M.; Tyberg, J.V.; Lydell, C.P.; Howarth, A.G.; Fine, N.M.; et al. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: Comparison to 2D strain by MRI and 3D speckle tracking echocardiography. Int. J. Cardiovasc. Imaging 2017, 33, 1979–1992.
dcterms.bibliographicCitationPedrizzetti, G.; Sengupta, S.; Caracciolo, G.; Park, C.S.; Amaki, M.; Goliasch, G.; Narula, J.; Sengupta, P.P. Three-Dimensional Principal Strain Analysis for Characterizing Subclinical Changes in Left Ventricular Function. J. Am. Soc. Echocardiogr. 2014, 27, 1041–1050.e1.
dcterms.bibliographicCitationBarba-J, L.; Moya-Albor, E.; Escalante-Ramírez, B.; Brieva, J.; Venegas, E.V. Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform. Comput. Biol. Med. 2016, 69, 189–202.
dcterms.bibliographicCitationRanjan, A.; Romero, J.; Black, M.J. Learning human optical flow. arXiv 2018, arXiv:1806.05666.
dcterms.bibliographicCitationAlexiadis, D.S.; Mitianoudis, N.; Stathaki, T. Multidimensional directional steerable filters—Theory and application to 3D flow estimation. Image Vis. Comput. 2018, 71, 38–67.
dcterms.bibliographicCitationHa, I.Y.; Wilms, M.; Handels, H.; Heinrich, M.P. Model-based sparse-to-dense image registration for realtime respiratory motion estimation in image-guided interventions. IEEE Trans. Biomed. Eng. 2018, 66, 302–310.
dcterms.bibliographicCitationYoon, S.; Katsevich, A.; Frenkel, M.; Munro, P.; Paysan, P.; Seghers, D.; Strzelecki, A. A motion estimation and compensation algorithm for 4D CBCT of the abdomen. In Proceedings of the 15th International Meeting on Fully Three-Dimensional Image Reconstruction in Radiology and Nuclear Medicine, Philadelphia, PA, USA, 2–6 June 2019; International Society for Optics and Photonics: Bellingham, WA, USA, 2019; Volume 11072, p. 110720E.
dcterms.bibliographicCitationCha, J.; Farhangi, M.M.; Dunlap, N.; Amini, A.A. Segmentation and tracking of lung nodules via graph-cuts incorporating shape prior and motion from 4D CT. Med. Phys. 2018, 45, 297–306.
dcterms.bibliographicCitationPrevost, R.; Salehi, M.; Jagoda, S.; Kumar, N.; Sprung, J.; Ladikos, A.; Bauer, R.; Zettinig, O.; Wein, W. 3D freehand ultrasound without external tracking using deep learning. Med. Image Anal. 2018, 48, 187–202.
dcterms.bibliographicCitationGorce, J.; Friboulet, D.; Magnin, I. Estimation of three-dimensional cardiac velocity fields: Assessment of a differential method and application to 3D CT data. Med. Image Anal 1997, 1, 127–140.
dcterms.bibliographicCitationQueirós, S.; Vilaça, J.L.; Morais, P.; Fonseca, J.C.; D’hooge, J.; Barbosa, D. Fast left ventricle tracking using localized anatomical affine optical flow. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e2871.
dcterms.bibliographicCitationKrishnaswamy, D.; Hareendranathan, A.R.; Suwatanaviroj, T.; Boulanger, P.; Becher, H.; Noga, M.; Punithakumar, K. A Novel 4D Semi-Automated Algorithm for Volumetric Segmentation in Echocardiography. In Proceedings of the 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Honolulu, HI, USA, 18–21 July 2018; pp. 1119–1122.
dcterms.bibliographicCitationTek, H.; Georgescu, B.; Mansi, T.; Sauer, F.; Comaniciu, D.; Houle, H.C.; Voigt, I. Cardiac Flow Detection Based on Morphological Modeling in Medical Diagnostic Ultrasound Imaging. U.S. Patent Application No. 15/797,161, 2 May 2019.
dcterms.bibliographicCitationDuan, Q.; Angelini, E.D.; Herz, S.L.; Ingrassia, C.M.; Gerard, O.; Costa, K.D.; Holmes, J.W.; Laine, A.F. Evaluation of optical flow algorithms for tracking endocardial surfaces on three-dimensional ultrasound data. Proc. SPIE 2005, 5750, 159–169
dcterms.bibliographicCitationDuan, Q.; Angelini, E.D.; Homma, S.; Laine, A. Validation of Optical-Flow for Quantification of Myocardial Deformations on Simulated Rt3d Ultrasound. In Proceedings of the 2007 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, Washington, DC, USA, 12–16 April 2007; pp. 944–947.
dcterms.bibliographicCitationLeung, E.; Danilouchkine, M.; van Stralen, M.; de Jong, N.; van der Steen, A.; Bosch, J. Tracking left ventricular borders in 3D echocardiographic sequences using motion-guided optical flow. SPIE 2009.
dcterms.bibliographicCitationZhang, Y.; Liang, X.; Ma, J.; Jing, Y.; Gonzales, M.J.; Villongco, C.; Krishnamurthy, A.; Frank, L.R.; Nigam, V.; Stark, P.; et al. An atlas-based geometry pipeline for cardiac Hermite model construction and diffusion tensor reorientation. Med. Image Anal. 2012, 16, 1130–1141.
dcterms.bibliographicCitationThirion, J.P. Image matching as a diffusion process: An analogy with Maxwell’s demons. Med. Image Anal. 2018, 2, 243–260.
dcterms.bibliographicCitationMoya-Albor, E.; Mira, C.; Brieva, J.; Escalante-Ramirez, B.; Venegas, E.V. 3D optical flow estimation in cardiac CT images using the Hermite transform. SPIE 2017, 10160.
dcterms.bibliographicCitationMartens, J.B. The Hermite Transform-Theory. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1595–1606.
dcterms.bibliographicCitationSakitt, B.; Barlow, H. A Model for the Economical Encoding of the Visual Image in Cerebral Cortex. Biol. Cybern. 1982, 43, 97–108.
dcterms.bibliographicCitationYoung, R. The Gaussian Derivative Theory of Spatial Vision: Analysis of Cortical Cell Receptive Field Line–Weighting Profiles; Research publication; General Motors Research Laboratories: Warren, MI, USA, 1985.
dcterms.bibliographicCitationMartens, J.B. The Hermite Transform-Applications. IEEE Trans. Acoust. Speech Signal Process. 1990, 38, 1607–1618.
dcterms.bibliographicCitationYoung, R. Gaussian derivative model of spatial vision: I. Retinal mechanisms. Spat. Vis. 1987, 2, 273–293.
dcterms.bibliographicCitationBrackx, F.; De Schepper, N.; Sommen, F. The higher dimensional Hermite transform: A new approach. Complex Var. 2003, 48, 189–210.
dcterms.bibliographicCitationAbramowitz, M. Handbook of Mathematical Functions, With Formulas, Graphs, and Mathematical Tables; Dover Publications: Mineola, NY, USA, 1974.
dcterms.bibliographicCitationVan Dijk, A.M.; Martens, J. Image representation and compression with steered Hermite transforms. Signal Process. 1997, 56, 1–16.
dcterms.bibliographicCitationFreeman, W.T.; Adelson, E.H. The Design and Use of Steerable Filters. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 891–906.
dcterms.bibliographicCitationEscalante-Ramírez, B.; Silván-Cárdenas, J.L. Multiresolution directional-oriented image transform based on Gaussian derivatives. Proc. SPIE 2001, 4478, 315–322.
dcterms.bibliographicCitationEscalante-Ramírez, B.; Silván-Cárdenas, J.L. Advanced modeling of visual information processing: A multiresolution directional-oriented image transform based on Gaussian derivatives. Signal Process. Image Commun. 2005, 20, 801–812.
dcterms.bibliographicCitationWu, X.; Ding, G.; Taylor, V. Parallel Optical Flow Processing of 4D Cardiac CT Data on Multicore Clusters. In Proceedings of the 2014 IEEE 17th International Conference on Computational Science and Engineering, Chengdu, China, 19–21 December 2014; pp. 113–120.
dcterms.bibliographicCitationOtte, M.; Nagel, H.H. Optical flow estimation: Advances and comparisons. In European Conference on Computer Vision; Eklundh, J.O., Ed.; Springer: Berlin/Heidelberg, Germany, 1994; Volume I, pp. 49–60.
dcterms.bibliographicCitationBaker, S.; Scharstein, D.; Lewis, J.P.; Roth, S.; Black, M.J.; Szeliski, R. A Database and Evaluation Methodology for Optical Flow. Int. J. Comput. Vis. 2011, 92, 1–31.
dcterms.bibliographicCitationMathworks, T. Computer Vision System Toolbox. 2018. Available online: (accessed on 22 November 2019).
dcterms.bibliographicCitationBigun, J.; Granlund, G.H.; Wiklund, J. Multidimensional orientation estimation with applications to texture analysis and optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 1991, 13, 775–790.
dcterms.bibliographicCitationKoren, M.J.; Devereux, R.B.; Casale, P.N.; Savage, D.D.; Laragh, J.H. Relation of left ventricular mass and geometry to morbidity and mortality in uncomplicated essential hypertension. Ann. Intern. Med. 1991, 114, 345–352.
dcterms.bibliographicCitationMcDonald, I.G. The shape and movements of the human left ventricle during systole: A study by cineangiography and by cineradiography of epicardial markers. Am. J. Cardiol. 1970, 26, 221–230.
dcterms.bibliographicCitationChen, C.W.; Huang, T.S. Epicardial motion and deformation estimation from coronary artery bifurcation points. In Proceedings of the Third International Conference on Computer Vision, Osaka, Japan, 4–7 December 1990; pp. 456–459.
dcterms.bibliographicCitationOsher, S.; Sethian, J.A. Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 1988, 79, 12–49.
dcterms.bibliographicCitationCIBC. Seg3D: Volumetric Image Segmentation and Visualization. Scientific Computing and Imaging Institute (SCI). 2016. Available online: Http:// (accessed on 22 November 2019).
dcterms.bibliographicCitationAhrens, J.; Geveci, B.; Law, C. Paraview: An end-user tool for large data visualization. In The Visualization Handbook; Elsevier: Amsterdam, The Netherlands, 2005; Volume 717, ISBN 978-0123875822.
dcterms.bibliographicCitationAyachit, U. The Paraview Guide: A Parallel Visualization Application; Kitware, Inc.: Clifton Park, NY, USA, 2015.
dcterms.bibliographicCitationSong, S.M.; Leahy, R.M. Computation of 3-D velocity fields from 3-D cine CT images of a human heart. IEEE Trans. Med. Imaging 1991, 10, 295–306.
dcterms.bibliographicCitationChan, K.G.; Liebling, M. Estimation of divergence-free 3D cardiac blood flow in a zebrafish larva using multi-view microscopy. In Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging (ISBI), New York, NY, USA, 16–19 April 2015; pp. 385–388.
dcterms.bibliographicCitationGutierrez, M.; Moura, L.; Melo, C.; Alens, N. Computing optical flow in cardiac images for 3D motion analysis. In Proceedings of the Computers in Cardiology Conference, London, UK, 5–8 September 1993; pp. 37–40.
dcterms.bibliographicCitationCondell, J.; Barron, L. 3D Optical Flow Methods in Cardiac Imaging. In Proceedings of the Irish Machine Vision and Image Processing Conference, Belfast, UK, 30–31 August 2005; Volume 30, p. 227.
dcterms.bibliographicCitationSilván-Cárdenas, J.L.; Escalante-Ramírez, B. The Multiscale Hermite Transform for Local Orientation Analysis. IEEE Trans. Image Process. 2006, 15, 1236–1253.
dc.description.versionVersión del editor

Files in this item


This item appears in the following Collection(s)

Show simple item record

Acceso Abierto
Except where otherwise noted, this item's license is described as Acceso Abierto