Show simple item record

dc.contributor.authorSosa-Gómez, Guillermo
dc.contributor.authorRojas, Omar
dc.contributor.otherCampus Guadalajaraes
dc.coverage.spatialMéxico
dc.creatorOMAR GUILLERMO ROJAS ALTAMIRANO;344229
dc.date.accessioned2020-06-10T17:27:27Z
dc.date.available2020-06-10T17:27:27Z
dc.date.issued2020
dc.identifier.citationSosa Gómez, G. y Rojas Altamirano, O. G. y Páez-Osuna, O. (2020). Using hadamard transform for cryptanalysis of pseudo-random generators in stream ciphers. EAI Endorsed Transactions on Energy Web, 7 (27). DOI: 10.4108/eai.13-7-2018.163980en
dc.identifier.issn1615-5548
dc.identifier.urihttps://hdl.handle.net/20.500.12552/5151
dc.identifier.urihttp://dx.doi.org/10.4108/eai.13-7-2018.163980
dc.description.abstractIn this work we discuss results obtained from an application of the Hadamard transform to cryptanalysis, and in particular, we determine the probability to decipher different pseudo-random number generators used as components of stream ciphers. Also, we found a relationship between entropy and Hadamard's values. © 2020 Guillermo Sosa-Gomez et al.en
dc.language.isoeng*
dc.publisherEuropean Alliance for Innovationen
dc.relation.ispartofREPOSITORIO SCRIPTAes
dc.relation.ispartofREPOSITORIO NACIONAL CONACYTes
dc.relation.ispartofOPENAIREes
dc.relation.ispartofseries7;27
dc.rightsAcceso Abiertoes
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0*
dc.rights.urihttps://eudl.eu/openaccess
dc.sourceEAI Endorsed Transactions on Energy Weben
dc.subjectEntropyen
dc.subjectHadamard transformen
dc.subjectPseudo-random generatorsen
dc.subjectStream ciphersen
dc.subject.classificationCIENCIAS SOCIALESes
dc.subject.classificationCiencias Económicas y Empresarialeses
dc.titleUsing hadamard transform for cryptanalysis of pseudo-random generators in stream ciphersen
dc.typeArtículoes
dcterms.audienceInvestigadoreses
dcterms.audienceEstudianteses
dcterms.audienceMaestroses
dcterms.bibliographicCitationFord, W. and Baum, M.S. (2000) Secure Electronic Commerce: Building the Infrastructure for Digital Signatures and Encryption (Upper Saddle River, NJ: Prentice Hall PTR).en
dcterms.bibliographicCitationTorrubia, A., Francisco, J.M. and Marti, L. (2001). Cryptography regulations for e-commerce and digital rights management. Computers & Security 20(8): 724–738.en
dcterms.bibliographicCitationKosba, A., Miller, A., Shi, E., Wen, Z. and Papamanthou, C. (2016). Hawk: The blockchain model of cryptography and privacy-preserving smart contracts. In 2016 IEEE symposium on security and privacy (SP) (IEEE): 839–858.en
dcterms.bibliographicCitationNofer, M., Gomber, P., Hinz, O. and Schiereck, D. (2017). Blockchain. Business & Information Systems Engineering 59(3): 183–187.en
dcterms.bibliographicCitationHenry, R., Herzberg, A. and Kate, A. (2018). Blockchain access privacy: Challenges and directions. IEEE Security & Privacy 16(4): 38–45.en
dcterms.bibliographicCitationVenkatesulu, M. and Ravi, M. (2016). A stream cipher for real time applications. In International Conference on Theoretical Computer Science and Discrete Mathematics (Springer): 453–456.en
dcterms.bibliographicCitationKatz, J. and Lindell, Y. (2014) Introduction to Modern Cryptography (Chapman and Hall/CRC).en
dcterms.bibliographicCitationSchneier, B. (2000). A self-study course in block-cipher cryptanalysis. Cryptologia 24(1): 18–33.en
dcterms.bibliographicCitationRueppel, R.A. (1986). Stream ciphers. In Analysis and Design of Stream Ciphers (Springer), 5–16.en
dcterms.bibliographicCitationSinkov, A. and Feil, T. (2009). Elementary Cryptanalysis, 22 (Washington: MAA).en
dcterms.bibliographicCitationDooley, J.F. (2018). History of Cryptography and Cryptanalysis (Cham: Springer).en
dcterms.bibliographicCitationHåstad, J., Impagliazzo, R., Levin, L.A. and Luby, M. (1999). A pseudorandom generator from any one-way function. SIAM Journal on Computing 28(4): 1364–1396.en
dcterms.bibliographicCitationBeer, T. (1981). Walsh transforms. American Journal of Physics 49(5): 466–472.en
dcterms.bibliographicCitationJiao, L., Hao, Y. and Feng, D. (2020). Stream cipher designs: a review. Science China Information Sciences 63(3): 1–25.en
dcterms.bibliographicCitationIbáñez, M.S. and Díaz, R.G. (1999). Generación y Análisis de Secuencias Pseudoaleatorias (Edicions UPC).en
dcterms.bibliographicCitationCover, T.M. and Thomas, J.A. (2012). Elements of Information Theory (John Wiley & Sons).en
dcterms.bibliographicCitationCoppersmith, D., Krawczyk, H. and Mansour, Y. (1993). The shrinking generator. In Annual International Cryptology Conference (Springer): 22–39.en
dcterms.bibliographicCitationShparlinski, I. (2001). On the linear complexity of the power generator. Designs, Codes and Cryptography 23(1): 5–10.en
dcterms.bibliographicCitationBarkan, E., Biham, E. and Keller, N. (2003). Instant ciphertext-only cryptanalysis of gsm encrypted communication. In Annual international cryptology conference (Springer): 600–616.en
dcterms.bibliographicCitationBiryukov, A., Shamir, A. and Wagner, D. (2000). Real time cryptanalysis of a5/1 on a pc. In International Workshop on Fast Software Encryption (Springer): 1–18.en
dcterms.bibliographicCitationBakhtiari, M. and Maarof, M.A. (2011). An efficient stream cipher algorithm for data encryption. International Journal of Computer Science Issues (IJCSI) 8(3): 247.en
dcterms.bibliographicCitationSchneier, B. (1994). Description of a new variable-length key, 64-bit block cipher (blowfish). In Anderson, R. [ed.] Fast Software Encryption (Berlin, Heidelberg: Springer Berlin Heidelberg): 191–204.en
dcterms.bibliographicCitationChaudhari, M.P. and Patel, S.R. (2014). A survey on cryptography algorithms. International Journal of Advance Research in Computer Science and Management Studies 2(3).en
dcterms.bibliographicCitationShannon, C.E. (1948). A mathematical theory of communication. Bell system technical journal 27(3): 379–423.en
dcterms.bibliographicCitationTsuneda, A. (2019). Orthogonal chaotic binary sequences based on bernoulli map and walsh functions. Entropy 21(10): 930.en
dcterms.bibliographicCitationCariow, A., Majorkowska-Mech, D., Papliński, J.P. and Cariowa, G. (2019). A new fast algorithm for discrete fractional hadamard transform. IEEE Transactions on Circuits and Systems I: Regular Papers 66(7): 2584–2592.en
dcterms.bibliographicCitationChen, Z, G.T. and Klapper, A. (2019). On the q-bentness of boolean functions. Designs, Codes and Cryptography 87(1): 163–171.en
dcterms.bibliographicCitationCarle, C. and Mesnager, S. (2010). On the construction of bent vectorial functions. International Journal of Information and Coding Theory 1(2): 133–148.en
dcterms.bibliographicCitationBernasconi, A., Codenotti, B. and Simon, J. (1996). On the fourier analysis of boolean functions. preprint : 1–24.en
dcterms.bibliographicCitationPommerening, K. (2005). Fourier analysis of boolean maps–a tutorial–, Johannes-Gutenberg-Universitaet working paperen
dcterms.bibliographicCitationCooley, J.W. and Tukey, J.W. (1965). An Algorithm for the Machine Calculation of Complex Fourier Series. Mathematics of Computation 19(90): 297. doi:10.2307/2003354 URL https://www.jstor.org/stable/2003354en
dcterms.bibliographicCitationVan Lint, J.H., Wilson, R.M. and Wilson, R.M. (2001). A Course in Combinatorics (Cambridge University Press).en
dc.description.versionVersión del editores
dc.identifier.doi10.4108/eai.13-7-2018.163980


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Acceso Abierto
Except where otherwise noted, this item's license is described as Acceso Abierto