dc.contributor.author | Avalos Gauna, Edgar | |
dc.contributor.author | Palafox Novack, Leon Felipe | |
dc.contributor.other | Campus Ciudad de México | es |
dc.date.accessioned | 2020-06-17T02:32:14Z | |
dc.date.available | 2020-06-17T02:32:14Z | |
dc.date.issued | 2019 | |
dc.identifier.citation | Avalos Gauna, E. y Palafox Novack, L. F. (2019). Heat transfer coefficient prediction of a porous material by implementing a machine learning model on a CFD data set. En: Proceedings of the 6 th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'19) Ottawa, Canada, June, 2019, (FFHMT 149). Avestia Publishing. DOI: 10.11159/ffhmt19.149 | en |
dc.identifier.isbn | 9781927877593 | |
dc.identifier.issn | 2369-3029 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12552/5167 | |
dc.identifier.uri | http://dx.doi.org/10.11159/ffhmt19.149 | |
dc.description.abstract | During many years, the search for new and improved materials has been an arduous task. It has mainly focused on experimentation and in recent years on computer aided techniques (i.e. numerical simulation). These two approaches defined the way material science works. Yet, both techniques have shown cost-efficiency disadvantages. Optimization algorithms, like the ones used in machine learning, have proven to be an alternative tool when dealing with lots of data and finding a particular solution. Even though the use of machine learning is a well stablished technique in other fields, its application in material science is relatively new. Material Informatics provides a new approach to analyse materials such as porous metals by employing previous data sets. This paper studies a new technique to predict the heat transfer coefficient of an open-cell porous structure while running water passes through the material. A CFD data set was employed by a Machine Learning technique in order to establish a relationship between the input parameters (porosity, pore size, pore distribution and flow rate) and the heat transfer coefficient of the sample. The results obtained from the analyses were compared with previous findings, concluding that by utilising a Machine Leaning technique is possible to obtain a more accurate and much better fit model. © 2019, Avestia Publishing. | en |
dc.language.iso | eng | en |
dc.publisher | Avestia Publishing | en |
dc.relation.ispartof | REPOSITORIO SCRIPTA | es |
dc.relation.ispartof | REPOSITORIO NACIONAL CONACYT | es |
dc.relation.ispartof | OPENAIRE | es |
dc.relation.ispartofseries | FFHMT 149 | |
dc.rights | Acceso Abierto | es |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-sa/4.0 | * |
dc.rights.uri | http://avestia.international-aset.com/FFHMT2019_Proceedings/files/ethics.html | |
dc.source | Proceedings of the 6 th International Conference of Fluid Flow, Heat and Mass Transfer (FFHMT'19) Ottawa, Canada, June, 2019 | en |
dc.subject | Heat transfer coefficient | en |
dc.subject | Machine learning | en |
dc.subject | Materials informatics | en |
dc.subject | Porosity | en |
dc.subject.classification | INGENIERÍA Y TECNOLOGÍA | es |
dc.subject.classification | Ingeniería | es |
dc.title | Heat transfer coefficient prediction of a porous material by implementing a machine learning model on a CFD data set | en |
dc.type | Contribución a congreso | es |
dcterms.audience | Investigadores | es |
dcterms.audience | Estudiantes | es |
dcterms.audience | Maestros | es |
dcterms.bibliographicCitation | B. D. Conduit, N. G. Jones, H. J. Stone, and G. J. Conduit, “Probabilistic design of a molybdenum-base alloy using a neural network,” Scr. Mater., vol. 146, pp. 82–86, 2018. | en |
dcterms.bibliographicCitation | K. Matouš, M. G. D. Geers, V. G. Kouznetsova, and A. Gillman, “A review of predictive nonlinear theories for multiscale modeling of heterogeneous materials,” J. Comput. Phys., vol. 330, pp. 192–220, 2017. | en |
dcterms.bibliographicCitation | T. Lookman, P. V. Balachandran, D. Xue, J. Hogden, and J. Theiler, “Statistical inference and adaptive design for materials discovery,” Curr. Opin. Solid State Mater. Sci., vol. 21, no. 3, pp. 121–128, 2017. | en |
dcterms.bibliographicCitation | J. H. Panchal, S. R. Kalidindi, and D. L. McDowell, “Key computational modeling issues in Integrated Computational Materials Engineering,” CAD Comput. Aided Des., vol. 45, no. 1, pp. 4–25, 2013. | en |
dcterms.bibliographicCitation | A. Gupta, A. Cecen, S. Goyal, A. K. Singh, and S. R. Kalidindi, “Structure-property linkages using a data science approach: Application to a non-metallic inclusion/steel composite system,” Acta Mater., vol. 91, pp. 239–254, 2015. | en |
dcterms.bibliographicCitation | K. Rajan, “Materials informatics,” Mater. today, pp. 38–45, 2005. | en |
dcterms.bibliographicCitation | K. Takahashi and Y. Tanaka, “Material synthesis and design from first principle calculations and machine learning,” Comput. Mater. Sci., vol. 112, pp. 364–367, 2016. | en |
dcterms.bibliographicCitation | A. Smola and S. V. N. Vishwanathan, Introduction to Machine Learning, 1st Ed. Cambridge, UK: Cambridge university press, 2008. | en |
dcterms.bibliographicCitation | D. H. Wolpert and W. G. Macready, “Wolpert -- No Free Lunch Theorems.pdf,” Trans. Evol. Comput., vol. 1, no. 1, pp. 67–82, 1997. | en |
dcterms.bibliographicCitation | S. Ramakrishna et al., “Materials informatics,” J. Intell. Manuf., vol. 58, no. 6, pp. 1–20, 2018. | en |
dcterms.bibliographicCitation | L. Ward and C. Wolverton, “Atomistic calculations and materials informatics: A review,” Curr. Opin. Solid State Mater. Sci., vol. 21, no. 3, pp. 167–176, 2017. | en |
dcterms.bibliographicCitation | W. Lu, R. Xiao, J. Yang, H. Li, and W. Zhang, “Data mining-aided materials discovery and optimization,” J. Mater., vol. 3, no. 3, pp. 191–201, 2017. | en |
dcterms.bibliographicCitation | E. Bélisle, Z. Huang, S. Le Digabel, and A. E. Gheribi, “Evaluation of machine learning interpolation techniques for prediction of physical properties,” Comput. Mater. Sci., vol. 98, pp. 170–177, 2015. | en |
dcterms.bibliographicCitation | B. D. Conduit, N. G. Jones, H. J. Stone, and G. J. Conduit, “Design of a nickel-base superalloy using a neural network,” Mater. Des., vol. 131, no. April, pp. 358–365, 2017. | en |
dcterms.bibliographicCitation | N. Artrith and A. Urban, “An implementation of artificial neural-network potentials for atomistic materials
simulations: Performance for TiO2,” Comput. Mater. Sci., vol. 114, pp. 135–150, 2016. | en |
dcterms.bibliographicCitation | E. Avalos Gauna and Y. Zhao, “Numerical Simulation of Heat Transfer in Porous Metals for Cooling Applications,” Metall. Mater. Trans. B, 2017. | en |
dcterms.bibliographicCitation | C. Y. Zhao, T. J. Lu, H. P. Hodson, and J. D. Jackson, “The Temperature Dependence of Effective Thermal
Conductivity of Open-Celled Steel Alloy Foams,” Mater. Sci. Eng., vol. 367, pp. 123–131, 2004. | en |
dcterms.bibliographicCitation | H. Ohno, “Uniforming the dimensionality of data with neural networks for materials informatics,” Appl. Soft Comput. J., vol. 46, pp. 17–25, 2016 | en |
dcterms.bibliographicCitation | Edgar Avalos-Gauna, “Numerical Simulation of Active Cooling Using Porous Metals,” University of Liverpool, 2017. | en |
dcterms.bibliographicCitation | N. Dukhan, Ö. Baǧci, and M. Özdemir, “Experimental Flow in Various Porous Media and Reconciliation of
Forchheimer and Ergun Relations,” Exp. Therm. Fluid Sci., vol. 57, pp. 425–433, 2014. | en |
dcterms.bibliographicCitation | T. J. Lu, H. A. Stone, and M. F. Ashby, “Heat Transfer in Open-Cell Metal Foams,” Acta Mater., vol. 46, no. 10, pp. 3619–3635, Jun. 1998. | en |
dcterms.bibliographicCitation | Z. Xiao and Y. Zhao, “Heat Transfer Coefficient of Porous Copper with Homogeneous and Hybrid Structures in Active Cooling,” J. Mater. Res., vol. 28, no. 17, pp. 2545–2553, Jul. 2013. | en |
dcterms.bibliographicCitation | A. Kopanidis, A. Theodorakakos, E. Gavaises, and D. Bouris, “3D Numerical Simulation of Flow and Conjugate Heat Transfer Through a Pore Scale Model of High Porosity Open Cell Metal Foam,” Int. J. Heat Mass Transf., vol. 53, no. 11–12, pp. 2539–2550, May 2010. | en |
dcterms.bibliographicCitation | M. Bai and J. N. Chung, “Analytical and Numerical Prediction of Heat Transfer and Pressure Drop in Open-Cell Metal Foams,” Int. J. Therm. Sci., vol. 50, no. 6, pp. 869–880, Jun. 2011. | en |
dcterms.bibliographicCitation | E. Avalos Gauna and Y. Zhao, “Numerical Simulation of Heat Transfer in Porous Metals for Cooling Applications,” in SESSION 2: SOLIDIFICATION AND CASTING, SALON B, 2016, no. October, p. 2016. | en |
dcterms.bibliographicCitation | L. Zhang, D. Mullen, K. Lynn, and Y. Zhao, “Heat Transfer Performance of Porous Copper Fabricated by the Lost Carbonate Sintering Process,” in Mater. Res. Soc. Symp. Proc, 2009, vol. 1188. | en |
dcterms.bibliographicCitation | S. Mahjoob and K. Vafai, “A Synthesis of Fluid and Thermal Transport Models for Metal Foam Heat Exchangers,” Int. J. Heat Mass Transf., vol. 51, no. 15–16, pp. 3701–3711, Jul. 2008. | en |
dcterms.bibliographicCitation | J. M. Baloyo, “Porous Metals with Novel Structures for Optimum Heat Exchange Performance, PhD Thesis,” University of Liverpool, 2016. | en |
dcterms.bibliographicCitation | L. Van der Maaten, “Barnes-Hut-SNE,” Pattern recognition and Bioinformatics, pp. 1–11, 2013. | en |
dcterms.bibliographicCitation | Z. Xiao, “Heat Transfer , Fluid Transport and Mechanical Properties of Porous Copper Manufactured by Lost Carbonate Sintering, PhD Thesis,” 2013. | en |
dc.description.version | Versión del editor | es |
dc.identifier.doi | 10.11159/ffhmt19.149 | |