Show simple item record

dc.contributor.authorRomero-Silva, Rodrigo
dc.contributor.authorHurtado Hernández, Margarita
dc.contributor.otherCampus Ciudad de Méxicoes
dc.creatorRODRIGO ROMERO SILVA;468237
dc.identifier.citationRomero-Silva, R., Shaaban, S., Marsillac, E. y Hurtado-Hernandez, M. (2020). Studying the effects of the skewness of inter-arrival and service times on the probability distribution of waiting times. Pesquisa Operacional, (40), 1-29. DOI:
dc.description.abstractPrevious studies have shown that the mean queue length of a GI/G/1 system is significantly influenced by the skewness of inter-arrival times, but not by the skewness of service times. These results are limited because all the distributions considered in previous studies were positively skewed. To address this limitation, this paper investigates the effects of the skewness of inter-arrival and service times on the probability distribution of waiting times, when a negatively skewed distribution is used to model inter-arrival and service times. Subsequent to a series of experiments on a GI/G/1 queue using discrete-event simulation, results have shown that the lowest mean waiting time and the lowest variance of waiting times can be attained with a combination of positive inter-arrival skewness and negative service skewness. Results also show an interesting effect of the skewness of service times in the probability of no-delay in environments with a higher utilization factor. © 2020 Brazilian Operations Research Society.en_US
dc.publisherSociedade Brasileira de Pesquisa Operacional
dc.relation.ispartofREPOSITORIO SCRIPTAes
dc.rightsAcceso Abiertoes
dc.sourcePesquisa Operacional
dc.subjectGI/G/1 queueen
dc.subjectQueueing theoryen
dc.subject.classificationINGENIERÍA Y TECNOLOGÍAes
dc.titleStudying the effects of the skewness of inter-arrival and service times on the probability distribution of waiting timesen
dcterms.bibliographicCitationAl-Hanbali A, Mandjes M, Nazarathy Y & Whitt W. 2011. The Asymptotic Variance of Departures in Critically Loaded Queues. Adv. Appl. Probab. 43: 243–263.
dcterms.bibliographicCitationBhat V N. 1993. Approximation for the variance of the waiting time in a GI/G/1 queue. Microelectron. Reliab. 33: 1997–2002.
dcterms.bibliographicCitationBolch G, Greiner S, De Meer H & Trivedi K S. 1998. Queueing Networks and Markov Chains, 1st ed. John Wiley & Sons, Inc., New York, NY.en
dcterms.bibliographicCitationBrandwajn A & Begin T. 2009. A Note on the Effects of Service Time Distribution in the M/G/1 Queue, in: Kaeli D, Sachs K. (Eds.), Computer Performance Evaluation and Benchmarking. Springer Berlin Heidelberg, pp. 138–144. 9en
dcterms.bibliographicCitationBuzacott J & Shanthikumar J G. 1993. Stochastic Models of Manufacturing Systems, 1st ed. Prentice-Hall, Englewood Cliffs, New Jersey.en
dcterms.bibliographicCitationChen N & Zhou S. 2010. Simulation-based estimation of cycle time using quantile regression. IIE Trans. 43: 176–191.
dcterms.bibliographicCitationDe Treville S, Shapiro R D & HamerI A.-P. 2004. From supply chain to demand chain: the role of lead time reduction in improving demand chain performance. J. Oper. Manag. 21: 613–627.
dcterms.bibliographicCitationDoerr K H, Freed T, Mitchell T R, Schriesheim C A & Zhou X (TRACY). 2004. Work Flow Policy and Within-Worker and Between-Workers Variability in Performance. J. Appl. Psychol. 89: 911–921.
dcterms.bibliographicCitationDudley N A. 1963. Work-Time Distributions. Int. J. Prod. Res. 2: 137–144.
dcterms.bibliographicCitationDuncan D B. 1955. Multiple Range and Multiple F Tests. Biometrics 11: 1–42.
dcterms.bibliographicCitationGross D. 1999. Sensitivity of output performance measures to input distribution shape in modeling queues.3. Real data scenario. In: Simulation Conference Proceedings, 1999 Winter. pp. 452--457 vol.1.
dcterms.bibliographicCitationGross D & Juttijudata M. 1997. Sensitivity of output performance measures to input distributions in queueing simulation modeling.en
dcterms.bibliographicCitationGue K R & Kim H H. 2012. Predicting departure times in multi-stage queueing systems. Comput. Oper. Res. 39: 1734–1744.
dcterms.bibliographicCitationHopp W & Spearman M. 2000. Factory Physics, Second. ed. McGraw-Hill.en
dcterms.bibliographicCitationInman R R. 1999. Empirical Evaluation of Exponential and Independence Assumptions in Queueing Models of Manufacturing Systems. Prod. Oper. Manag. 8: 409–432.
dcterms.bibliographicCitationJohnson M A. 1993. An empirical study of queueing approximations based on phase-type distributions. Commun. Stat. Model. 9: 531–561.
dcterms.bibliographicCitationJohnson M A & Taaffe M R. 1991. A graphical investigation of error bounds for moment-based queueing approximations. Queueing Syst. 8: 295–312.
dcterms.bibliographicCitationKelton W D, Smith J S & Sturrock D T. 2014. Simio and Simulation: Modeling, Analysis, Applications, 1st ed. Simio LLC, Sewickley, PA.en
dcterms.bibliographicCitationKhalil R A, Stockton D J & Fresco J A. 2008. Predicting the effects of common levels of variability on flow processing systems. Int. J. Comput. Integr. Manuf. 21: 325–336.
dcterms.bibliographicCitationKlincewicz J G & WHITT W. 1984. On approximations for queues, II: Shape constraints. AT&T Bell Lab. Tech. J. 63: 139–161.
dcterms.bibliographicCitationLagershausen S & Tan B. 2015. On the Exact Inter-departure, Inter-start, and Cycle Time Distribution of Closed Queueing Networks Subject to Blocking. IIE Trans. 47:673–692.
dcterms.bibliographicCitationLatouche G & Ramaswami V. 1999a. PH Distributions. In: Latouche G, Ramaswami V. (Eds.), Introduction to Matrix Analytic Methods in Stochastic Modeling. Society for Industrial and Applied Mathematics, Philadelphia, PA, pp. 33–60.
dcterms.bibliographicCitationLatouche G & Ramaswami V. 1999b. Introduction to Matrix Analytic Methods in Stochastic Modeling, 1st ed. Society for Industrial and Applied Mathematics, Philadelphia, PA.
dcterms.bibliographicCitationLau H.-S & Martin G E. 1987. The effects of skewness and kurtosis of processing times in unpaced lines. Int. J. Prod. Res. 25: 1483–1492.
dcterms.bibliographicCitationLaw A. 2014. Simulation Modeling and Analysis, 5th ed. McGraw-Hill, New York.en
dcterms.bibliographicCitationLemoine A J. 1976. On Random Walks and Stable GI/G/1 Queues. Math. Oper. Res. 1:159–164.en
dcterms.bibliographicCitationMyskja A. 1990. On approximations for the GI/GI/1 queue. Comput. Networks ISDN Syst. 20: 285–295.
dcterms.bibliographicCitationPowell S G & Pyke D F. 1994. An empirical investigation of the two-moment approximation for production lines. Int. J. Prod. Res. 32: 1137–1157.
dcterms.bibliographicCitationRomero-Silva R, Hurtado M & Santos J. 2016. Is the scheduling task contextdependent? A survey investigating the presence of constraints in different manufacturing contexts. Prod. Plan. Control 27: 753–760.
dcterms.bibliographicCitationRomero-Silva R, Marsillac E, Shaaban S & Hurtado-Hernández M. 2019. Reducing the variability of inter-departure times of a single-server queueing system – The effects of skewness. Comput. Ind. Eng. 135: 500–517.
dcterms.bibliographicCitationSahin I & Perrakis S. 1976. Moment Inequalities For A Class Of Single Server Queues. INFOR Inf. Syst. Oper. Res. 14: 144–152.
dcterms.bibliographicCitationSlack N. 1982. Work time distributions in production system modelling.
dcterms.bibliographicCitationTarasov V N. 2016. Analysis of queues with hyperexponential arrival distributions. Probl. Inf. Transm. 52: 14–23.
dcterms.bibliographicCitationTersine R J & Hummingbird E A. 1995. Lead-time reduction: the search for competitive advantage. Int. J. Oper. Prod. Manag. 15:, 8–18.
dcterms.bibliographicCitationThe R Foundation. 2019. The R Project for Statistical Computing [WWW Document]. URL (accessed 1/1/20).en
dcterms.bibliographicCitationWelch P D. 1983. The Statistical Analysis of Simulation Results. In: Lavenberg S S. (Ed.), The Computer Performance Modeling Handbook. Academic Press, New York, pp. 268–328.en
dcterms.bibliographicCitationWhitt W. 1989. An Interpolation Approximation for the Mean Workload in a GI/G/1 Queue. Oper. Res. 37: 936–952.
dcterms.bibliographicCitationWhitt W. 1984a. On approximations for queues, III: Mixtures of exponential distributions. AT&T Bell Lab. Tech. J. 63: 163–175.
dcterms.bibliographicCitationWhitt W. 1984b. Minimizing Delays in the GI/G/1 Queue. Oper. Res. 32: 41–51.
dcterms.bibliographicCitationWolff R W. 1970. Work-Conserving Priorities. J. Appl. Probab. 7: 327–337.
dcterms.bibliographicCitationWu K, Srivathsan S & Shen Y. 2018. Three-moment approximation for the mean queue time of a GI/G/1 queue. IISE Trans. 50: 63–73.
dcterms.bibliographicCitationWu K, Zhou Y & Zhao N. 2016. Variability and the fundamental properties of production lines. Comput. Ind. Eng. 99: 364–371.
dcterms.bibliographicCitationYang F, Ankenman B E & Nelson B L. 2008. Estimating Cycle Time Percentile Curves for Manufacturing Systems via Simulation. INFORMS J. Comput. 20: 628–643.
dc.description.versionVersión del editores

Files in this item


This item appears in the following Collection(s)

Show simple item record

Acceso Abierto
Except where otherwise noted, this item's license is described as Acceso Abierto