Show simple item record

dc.contributor.authorPonce, Hiram
dc.contributor.otherCampus Ciudad de Méxicoes
dc.identifier.citationPonce H., Souza P. (2020) A Comparative Analysis of Evolutionary Learning in Artificial Hydrocarbon Networks. In: Martínez-Villaseñor L., Herrera-Alcántara O., Ponce H., Castro-Espinoza F.A. (eds) Advances in Soft Computing. MICAI 2020. Lecture Notes in Computer Science, vol 12468. Springer, Cham.
dc.description.abstractArtificial hydrocarbon networks (AHN) is a supervised learning model that is loosely inspired on the interactions of molecules in organic compounds. This method is able to model data in a hierarchical and robust way. However, the original training algorithm is very time-consuming. Recently, novel training algorithms have been applied, including evolutionary learning. Particularly, this training algorithm employed particle swarm optimization (PSO), as part of the procedure. In this paper, we present a benchmark of other meta-heuristic optimization algorithms implemented on the training method for AHN. In this study, PSO, harmony search algorithm, cuckoo search, grey wolf optimization and whale optimization algorithm, were tested. The experimental results were done using public data sets on regression and binary classification problems. From the results, we concluded that the best algorithm was cuckoo search optimization for regression problems, while there is no evidence that one of the algorithms performed better for binary classification problems. © 2020, Springer Nature Switzerland AG.en
dc.description.tableofcontents1 Introduction -- 2 Evolutionary Learning for Artificial Hydrocarbon Networks -- 2.1 Artificial Hydrocarbon Networks -- 2.2 Overview of Meta-heuristic Optimization Methods -- 3 Experimentation -- 4 Results and Discussion -- 5 Conclusionsen
dc.publisherSpringer Science and Business Media Deutschland GmbHen
dc.relation.ispartofREPOSITORIO SCRIPTAes
dc.rightsAcceso Embargadoes
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en
dc.subjectArtificial intelligenceen
dc.subjectClassification (of information)en
dc.subjectHeuristic algorithmsen
dc.subjectHeuristic methodsen
dc.subjectSoft computingen
dc.subjectBinary classification problemsen
dc.subjectComparative analysisen
dc.subjectEvolutionary Learningen
dc.subjectHarmony search algorithmsen
dc.subjectMeta-heuristic optimizationsen
dc.subjectOptimization algorithmsen
dc.subjectRegression problemen
dc.subjectTraining algorithmsen
dc.subjectParticle swarm optimization (PSO)en
dc.subjectArtificial organic networksen
dc.subjectMachine learningen
dc.subjectMeta-heuristic optimizationen
dc.subjectSupervised learningen
dc.subject.classificationINGENIERÍA Y TECNOLOGÍAen
dc.titleA comparative analysis of evolutionary learning in artificial hydrocarbon networksen
dc.typeContribución a congresoes
dcterms.bibliographicCitationAbdullah, S., Burke, E.K., McCollum, B.: A hybrid evolutionary approach to the university course timetabling problem. In: 2007 IEEE Congress on Evolutionary Computation. pp. 1764–1768. IEEE (2007)en
dcterms.bibliographicCitationAsuncion, A., Newman, D.: Uci machine learning repository (2007)en
dcterms.bibliographicCitationBengio, Y.: Gradient-based optimization of hyperparameters. Neural Comput. 12(8), 1889–1900 (2000)en
dcterms.bibliographicCitationGeem, Z.W., Kim, J.H., Loganathan, G.V.: A new heuristic optimization algorithm: harmony search. Simulation 76(2), 60–68 (2001)en
dcterms.bibliographicCitationGlover, F.W., Kochenberger, G.A.: Handbook of metaheuristics. Springer Science & Business Media, Berlin (2006)en
dcterms.bibliographicCitationHandl, J., Knowles, J.: An evolutionary approach to multiobjective clustering. IEEE Trans. Evol. Comput. 11(1), 56–76 (2007)en
dcterms.bibliographicCitationHarizan, S., Kuila, P.: Evolutionary algorithms for coverage and connectivity problems in wireless sensor networks: a study. In: Das, S.K., Samanta, S., Dey, N., Kumar, R. (eds.) Design Frameworks for Wireless Networks. LNNS, vol. 82, pp. 257–280. Springer, Singapore (2020).
dcterms.bibliographicCitationKarimi, F., Lotfi, S., Izadkhah, H.: Multiplex community detection in complex networks using an evolutionary approach. Expert Syst. Appl. 146, 113184 (2020)en
dcterms.bibliographicCitationKennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks. vol. 4, pp. 1942–1948. IEEE (1995)en
dcterms.bibliographicCitationKuila, P., Gupta, S.K., Jana, P.K.: A novel evolutionary approach for load balanced clustering problem for wireless sensor networks. Swarm Evol. Comput. 12, 48–56 (2013)en
dcterms.bibliographicCitationMirjalili, S., Lewis, A.: The whale optimization algorithm. Adv. Eng. Software 95, 51–67 (2016).
dcterms.bibliographicCitationMirjalili, S., Mirjalili, S.M., Lewis, A.: Grey wolf optimizer. Adv. Eng. Software 69, 46–61 (2014).
dcterms.bibliographicCitationPonce, H., de Campos Souza, P.V., Guimarães, A.J., González-Mora, G.: Stochastic parallel extreme artificial hydrocarbon networks: an implementation for fast and robust supervised machine learning in high-dimensional data. Eng. Appl. Artif. Intell. 89, 103427 (2020)en
dcterms.bibliographicCitationPonce, H., González-Mora, G., Morales-Olvera, E., Souza, P.: Development of fast and reliable nature-inspired computing for supervised learning in high-dimensional data. In: Rout, M., Rout, J.K., Das, H. (eds.) Nature Inspired Computing for Data Science. SCI, vol. 871, pp. 109–138. Springer, Cham (2020).
dcterms.bibliographicCitationPonce, H., Ponce, P.: Artificial organic networks. In: Electronics, Robotics and Automotive Mechanics Conference (CERMA). pp. 29–34. IEEE (2011)en
dcterms.bibliographicCitationPonce, H., Ponce, P.: Artificial hydrocarbon networks: a new algorithm bio-inspired on organic chemistry. Int. J. Artif. Intell. Comput. Res. 4(1), 39–51 (2012)en
dcterms.bibliographicCitationPonce-Espinosa, H., Ponce-Cruz, P., Molina, A.: Artificial organic networks. Artificial Organic Networks. SCI, vol. 521, pp. 53–72. Springer, Cham (2014).
dcterms.bibliographicCitationRodriguez, J.D., Perez, A., Lozano, J.A.: Sensitivity analysis of k-fold cross validation in prediction error estimation. IEEE Trans. Pattern Anal. Mach. Intell. 32(3), 569–575 (2009)en
dcterms.bibliographicCitationSinha, A., Malo, P., Deb, K.: A review on bilevel optimization: from classical to evolutionary approaches and applications. IEEE Trans. Evol. Comput. 22(2), 276–295 (2017)en
dcterms.bibliographicCitationSun, J., Garibaldi, J.M., Hodgman, C.: Parameter estimation using metaheuristics in systems biology: a comprehensive review. IEEE/ACM Trans. Comput. Biol. Bioinform. 9(1), 185–202 (2011)en
dcterms.bibliographicCitationYang, X.S., Deb, S.: Cuckoo search via lévy flights. In: 2009 World Congress on Nature & Biologically Inspired Computing (NaBIC). pp. 210–214. IEEE (2009)en
dc.description.versionVersión aceptadaes

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Acceso Embargado
Except where otherwise noted, this item's license is described as Acceso Embargado