Artificial hydrocarbon networks for freezing of gait detection in Parkinson’s disease

Date
2020-11Author
Martinez-Villaseñor, Lourdes
Ponce, Hiram
Nuñez Martínez, José Pablo
Metadata
Show full item recordAbstract
Freezing of gait (FoG) is one of the most impairing phenomenon experienced by Parkinson's disease (PD) patients. This phenomenon is associated with falls and is an important factor that limits autonomy and impairs quality of life of PD patients. Pharmacological treatment is difficult and do not always help to deal with this problem. Robust FoG detection systems can help monitoring and identifying when a patient needs aid providing external cueing to deal with FoG episodes. In this paper, we describe a comparative analysis of traditional machine learning techniques against Artificial Hydrocarbon Networks (AHN) for FoG detection. We compared four supervised machine learning classifiers and AHN for FoG event detection using a publicly available dataset, obtaining 88% of F-score metric with AHN. We prove that AHN are suitable for FoG detection. © 2020 IEEE.
Collections
Related items
Showing items related by title, author, creator and subject.
-
Stochastic parallel extreme artificial hydrocarbon networks : an implementation for fast and robust supervised machine learning in high-dimensional data
Ponce, Hiram; González Mora, José Guillermo (Elsevier Ltd., 2020-03)Artificial hydrocarbon networks (AHN) – a supervised learning method inspired on organic chemical structures and mechanisms – have shown improvements in predictive power and interpretability in comparison with other ... -
A method to improve speed of training algorithm in artificial hydrocarbon networks
Martinez-Villaseñor, Lourdes; Ponce, Hiram (Institute of Electrical and Electronics Engineers Inc., 2020)Artificial hydrocarbon networks (AHN) is a supervised machine learning method inspired on chemical carbon networks that simulate heuristic chemical rules involved within organic molecules to represent the structure and ... -
A methodology based on deep learning for advert value calculation in CPM, CPC and CPA networks
Miralles, Luis (Springer Verlag, 2017)In this research, we propose a methodology for advert value calculation in CPM, CPC and CPA networks. Accurately estimating this value increases the three previous networks’ incomes by selecting the most profitable advert. ...