Show simple item record

dc.contributor.authorPonce, Hiram
dc.contributor.authorMartinez-Villaseñor, Lourdes
dc.contributor.authorMiralles, Luis
dc.contributor.otherCampus Ciudad de Méxicoes
dc.coverage.spatialMéxico
dc.creatorMARÍA DE LOURDES GUADALUPE MARTÍNEZ VILLASEÑOR;241561
dc.creatorHIRAM EREDIN PONCE ESPINOSA;376768
dc.date.accessioned2017-10-24T22:37:12Z
dc.date.available2017-10-24T22:37:12Z
dc.date.issued2016
dc.identifier.citationPonce, H., Martinez-Villaseñor, L. y Miralles, L. (2016). A novel wearable sensor-based human activity recognition approach using artificial hydrocarbon networks. Sensors, 16 (7). DOI: http://dx.doi.org/10.3390/s16071033es
dc.identifier.issn1424-8220
dc.identifier.urihttps://hdl.handle.net/20.500.12552/802
dc.identifier.urihttp://dx.doi.org/10.3390/s16071033
dc.description.abstractHuman activity recognition has gained more interest in several research communities given that understanding user activities and behavior helps to deliver proactive and personalized services. There are many examples of health systems improved by human activity recognition. Nevertheless, the human activity recognition classification process is not an easy task. Different types of noise in wearable sensors data frequently hamper the human activity recognition classification process. In order to develop a successful activity recognition system, it is necessary to use stable and robust machine learning techniques capable of dealing with noisy data. In this paper, we presented the artificial hydrocarbon networks (AHN) technique to the human activity recognition community. Our artificial hydrocarbon networks novel approach is suitable for physical activity recognition, noise tolerance of corrupted data sensors and robust in terms of different issues on data sensors. We proved that the AHN classifier is very competitive for physical activity recognition and is very robust in comparison with other well-known machine learning methods. © 2016 by the authors; licensee MDPI, Basel, Switzerland.en
dc.publisherMDPI AGen
dc.relation.ispartofREPOSITORIO SCRIPTAes
dc.relation.ispartofREPOSITORIO NACIONAL CONACYTes
dc.relation.ispartofOPENAIREes
dc.relation.ispartofseries16;7
dc.rightsAcceso Abiertoes
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0
dc.rights.urihttps://doaj.org/toc/1424-8220
dc.rights.urihttps://v2.sherpa.ac.uk/id/publication/17524
dc.sourceSensorsen
dc.subjectArtificial intelligenceen
dc.subjectBehavioral researchen
dc.subjectHydrocarbonsen
dc.subjectLearning systemsen
dc.subjectPattern recognitionen
dc.subjectSupervised learningen
dc.subjectWearable technologyen
dc.subjectActivity recognitionen
dc.subjectClassification processen
dc.subjectHuman activity recognitionen
dc.subjectMachine learning methodsen
dc.subjectMachine learning techniquesen
dc.subjectNoise toleranceen
dc.subjectOrganic networksen
dc.subjectSupervised machine learningen
dc.subjectWearable sensorsen
dc.subject.classificationINGENIERÍA Y TECNOLOGÍAes
dc.subject.classificationIngenieríaes
dc.titleA novel wearable sensor-based human activity recognition approach using artificial hydrocarbon networksen
dc.typeArtículoes
dcterms.audienceInvestigadoreses
dcterms.audienceEstudianteses
dcterms.audienceMaestroses
dcterms.bibliographicCitationAvci, A.; Bosch, S.; Marin-Perianu, M.; Marin-Perianu, R.; Havinga, P. Activity recognition using inertial sensing for healthcare, wellbeing and sports applications: A survey. In Proceedings of the 23rd International Conference on Architecture of Computing Systems, Hannover, Germany, 22–25 February 2010; pp. 1–10.en
dcterms.bibliographicCitationPreece, S.J.; Goulermas, J.Y.; Kenney, L.P.; Howard, D.; Meijer, K.; Crompton, R. Activity identification using body-mounted sensors-a review of classification techniques. Physiol. Meas. 2009, 30, 1–33.en
dcterms.bibliographicCitationGuidoux, R.; Duclos, M.; Fleury, G.; Lacomme, P.; Lamaudiere, N.; Maneng, P.; Paris, L.; Ren, L.; Rousset, S. A Smartphone-driven methodology for estimating physical activities and energy expenditure in free livng conditions. J. Biomed. Inform. 2014, 52, 271–278.en
dcterms.bibliographicCitationChen, L.; Hoey, J.; Nugent, C.D.; Cook, D.J.; Yu, Z. Sensor-based activity recognition. IEEE Trans. Syst. Man. Cybern. C Appl. Rev. 2012, 42, 790–808.en
dcterms.bibliographicCitationUgulino, W.; Cardador, D.; Vega, K.; Velloso, E.; Milidiú, R.; Fuks, H. Wearable computing: Accelerometers’ data classification of body postures and movements. In Advances in Artificial Intelligence—SBIA 2012; Springer: Berlin, Germany; Heidelberg, Germany, 2012; pp. 52–61.en
dcterms.bibliographicCitationReyes, J. Smartphone-Based Human Activity Recognition; Springer Theses; Springer: Cham, Switzerland, 2015.en
dcterms.bibliographicCitationBouarfa, L.; Jonker, P.; Dankelman, J. Discovery of high-level tasks in the operating room. J. Biomed. Inform. 2011, 44, 455–462.en
dcterms.bibliographicCitationNettleton, D.F.; Orriols-Puig, A.; Fornells, A. A study of the effect of different types of noise on the precision of supervised learning techniques. Artif. Intell. Rev. 2010, 33, 275–306.en
dcterms.bibliographicCitationLara, O.D.; Labrador, M.A. A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 2013, 15, 1192–1209.en
dcterms.bibliographicCitationRoggen, D.; Calatroni, A.; Rossi, M.; Holleczek, T.; Förster, K.; Tröster, G.; Lukowicz, P.; Bannach, D.; Pirkl, G.; Ferscha, A.; et al. Collecting complex activity datasets in highly rich networked sensor environments. In Proceedings of the IEEE Seventh International Conference on Networked Sensing Systems, Kassel, Germany, 15–18 June 2010; pp. 233–240.en
dcterms.bibliographicCitationDohnálek, P.; Gajdoš, P.; Moravec, P.; Peterek, T.; SnáŠel, V. Application and comparison of modified classifiers for human activity recognition. Prz. Elektrotech. 2013, 89, 55–58.en
dcterms.bibliographicCitationReiss, A.; Stricker, D. Introducing a new benchmarked dataset for activity monitoring. In Proceedings of the IEEE 16th International Symposium on Wearable Computers (ISWC), Newcastle, UK, 18–22 June 2012; pp. 108–109.en
dcterms.bibliographicCitationReiss, A.; Stricker, D. PAMAP2 physical activity monitoring monitoring data set. Dataset from the Department Augmented Vision, DFKI, Saarbrücken, Germany, August 2012.en
dcterms.bibliographicCitationGordon, D.; Schmidtke, H.; Beigl, M. Introducing new sensors for activity recognition. In Proceedings of the Workshop on How to Do Good Research in Activity Recognition at the 8th International Conference on Pervasive Computing, Helsinki, Finland, 17 May 2010; pp. 1–4.en
dcterms.bibliographicCitationRavi, N.; Dandekar, N.; Mysore, P.; Littman, M.L. Activity recognition from accelerometer data. In Proceedings of the 17th Conference on Innovative Applications of Artificial Intelligence (IAAI), Pittsburgh, PA, USA, 9–13 July 2005; AAAI Press: Pittsburgh, PA, USA, 2005; Volume 3, pp. 1541–1546.en
dcterms.bibliographicCitationMannini, A.; Sabatini, A.M. Machine learning methods for classifying human physical activity from on-body accelerometers. Sensors 2010, 10, 1154–1175.en
dcterms.bibliographicCitationSagha, H.; Digumarti, S.T.; Millán, J.D.R.; Chavarriaga, R.; Calatroni, A.; Roggen, D.; Tröster, G. Benchmarking classification techniques using the opportunity human activity dataset. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics, Anchorage, AK, USA, 9–12 October 2011; IEEE: Anchorage, AK, USA, 2011; pp. 36–40.en
dcterms.bibliographicCitationShoaib, M.; Bosch, S.; Incel, O.D.; Scholten, H.; Havinga, P.J. A survey of online activity recognition using mobile phones. Sensors 2015, 15, 2059–2085.en
dcterms.bibliographicCitationVishwakarma, S.; Agrawal, A. A survey on activity recognition and behavior understanding in video surveillance. Vis. Comput. 2013, 29, 983–1009.en
dcterms.bibliographicCitationChavarriaga, R.; Roggen, D.; Ferscha, A. Workshop on Robust Machine Learning Techniques for Human Activity Recognition; IEEE: Anchorage, AK, USA, 2011.en
dcterms.bibliographicCitationPonce, H.; Martinez-Villaseñor, L.; Miralles-Pechuan, L. Comparative Analysis of Artificial Hydrocarbon Networks and Data-Driven Approaches for Human Activity Recognition, Lecture Notes in Computer Science; Springer: Berlin, Germany; Heidelberg, Germany, 2015; Volume 9454, pp. 150–161.en
dcterms.bibliographicCitationLara, O. On the Automatic Recognition of Human Activities Using Heterogeneous Wearable Sensors. Ph.D. Thesis, University of South California, Los Angeles, CA, USA, 2012.en
dcterms.bibliographicCitationLuštrek, M.; Kaluža, B. Fall detection and activity recognition with machine learning. Informatica 2009, 33, 205–212.en
dcterms.bibliographicCitationLuštrek, M.; Kaluža, B. Fall detection and activity recognition with machine learning. Informatica 2009, 33, 205–212.en
dcterms.bibliographicCitationRoss, R.; Kelleher, J. A Comparative Study of the Effect of Sensor Noise on Activity Recognition Models. In Evolving Ambient Intelligence; Springer: Berlin/Heidelberg, Germany, 2013; pp. 151–162.en
dcterms.bibliographicCitationChavarriaga, R.; Sagha, H.; Calatroni, A.; Digumarti, S.T.; Tröster, G.; Millán, J.D.R.; Roggen, D. The Opportunity challenge: A benchmark database for on-body sensor-based activity recognition. Pattern Recognit. Lett. 2013, 34, 2033–2042.en
dcterms.bibliographicCitationPonce, H.; Ayala-Solares, R. The Power of Natural Inspiration in Control Systems; Studies in Systems, Decision and Control; Springer: Berlin/Heidelberg, Germany, 2016; Volume 40, pp. 1–10.en
dcterms.bibliographicCitationPonce, H.; Ponce, P.; Molina, A. Artificial Organic Networks: Artificial Intelligence Based on Carbon Networks; Studies in Computational Intelligence; Springer: Berlin/Heidelberg, Germany, 2014; Volume 521.en
dcterms.bibliographicCitationPonce, H.; Ponce, P.; Molina, A. The Development of an Artificial Organic Networks Toolkit for LabVIEW. J. Comput. Chem. 2015, 36, 478–492.en
dcterms.bibliographicCitationPonce, H.; Ponce, P.; Molina, A. A Novel Robust Liquid Level Controller for Coupled-Tanks Systems Using Artificial Hydrocarbon Networks. Expert Syst. Appl. 2015, 42, 8858–8867.en
dcterms.bibliographicCitationPonce, H.; Ponce, P.; Molina, A. Artificial Hydrocarbon Networks Fuzzy Inference System. Math. Probl. Eng. 2013, 2013, 1–13.en
dcterms.bibliographicCitationPonce, H.; Ponce, P.; Molina, A. Adaptive Noise Filtering Based on Artificial Hydrocarbon Networks: An Application to Audio Signals. Expert Syst. Appl. 2014, 41, 6512–6523.en
dcterms.bibliographicCitationBulling, A.; Blanke, U.; Schiele, B. A tutorial on human activity recognition using body-worn inertial sensors. ACM Comput. Surv. 2014, 46, 1–33.en
dcterms.bibliographicCitationAttal, F.; Mohammed, S.; Dedabrishvili, M.; Chamroukhi, F.; Oukhellou, L.; Amirat, Y. Physical Human Activity Recognition Using Wearable Sensors. Sensors 2015, 15, 31314–31338.en
dcterms.bibliographicCitationGuyon, I.; Weston, J.; Barnhill, S.; Vapnik, V. Gene selection for cancer classification using support vector machines. Mach. Learn. 2002, 46, 389–422.en
dcterms.bibliographicCitationGuyon, I.; Elisseeff, A. An introduction to variable and feature selection. J. Mach. Learn. Res. 2003, 3, 1157–1182.en
dcterms.bibliographicCitationZhu, X.; Wu, X. Class Noise vs. Attribute Noise: A quantitative Study. Artif. Intell. Rev. 2004, 22, 177–210.en
dcterms.bibliographicCitationHall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA Data Mining Software: An Update. SIGKDD Explor. 2009, 11, 10–18.en
dcterms.bibliographicCitationSokolova, M.; Lapalme, G. A systematic analysis of performance measures for classification tasks. Inf. Process. Manag. 2009, 45, 427–437.en
dc.description.versionVersión del editores
dc.identifier.doi10.3390/s16071033


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Acceso Abierto
Except where otherwise noted, this item's license is described as Acceso Abierto