Show simple item record

dc.contributor.authorMoya-Albor, Ernesto
dc.contributor.authorBrieva, Jorge
dc.contributor.otherCampus Ciudad de Méxicoes
dc.creatorERNESTO MOYA ALBOR;102463
dc.identifier.citationMoya-Albor, E., Mira, C., Brieva, J., Escalante-Ramirez, B. y Venegas, E. V. (2017). 3D optical flow estimation in cardiac CT images using the hermite transform. En: 12th International Symposium on Medical Information Processing and Analysis, 26 January 2017, (Proceedings SPIE, vol. 10160). Washington : SPIE. DOI:
dc.description.abstractHeart diseases are one of the most important causes of death in the Western world. It is, then, important to implement algorithms to aid the specialist in analyzing the heart motion. We propose a new strategy to estimate the cardiac motion through a 3D optical flow differential technique that uses the Steered Hermite transform (SHT). SHT is a tool that performs a decomposition of the images in a base that model the visual patterns used by the human vision system (HSV) for processing the information. The 3D + t analysis allows to describe most of motions of the heart, for example, the twisting motion that takes place on every beat cycle and to identify abnormalities of the heart walls. Our proposal was tested on two phantoms and on two sequences of cardiac CT images corresponding to two different patients. We evaluate our method using a reconstruction schema, for this, the resulting 3D optical flow was applied over the volume at time t to obtain a estimated volume at time t + 1. We compared our 3D optical flow approach to the classical Horn and Shunk's 3D algorithm for different levels of noise. © 2017 SPIE.en
dc.publisherSociety of Photo-optical Instrumentation Engineersen
dc.relation.ispartofREPOSITORIO SCRIPTAes
dc.relation.ispartofseriesProceedings of SPIE;10160en
dc.rightsAcceso Cerradoes
dc.source12th International Symposium on Medical Information Processing and Analysis, 26 January 2017en
dc.subject3D sequencesen
dc.subjectCardiac CT imagingen
dc.subjectDifferential methoden
dc.subjectOptical flowen
dc.subjectSteered Hermite transformen
dc.subjectOptical flowsen
dc.subjectCardiac CTen
dc.subjectCauses of deathen
dc.subjectDifferential methodsen
dc.subjectDifferential techniqueen
dc.subjectHermite transformsen
dc.subjectHuman vision systemsen
dc.subjectTwisting motionen
dc.subjectComputerized tomographyen
dc.subject.classificationINGENIERÍA Y TECNOLOGÍAes
dc.title3D optical flow estimation in cardiac CT images using the hermite transformen
dc.typeContribución a congresoes
dcterms.bibliographicCitationSchoenhagen, P., Stillman, A., Halliburton, S., and White, R., “Ct of the heart: principles, advances, clinical uses,” Cleveland Clinic Journal of Medicine 72(3), 127–140 (2005).en
dcterms.bibliographicCitationGorce, J., Friboulet, D., and Magnin, I., “Estimation of three-dimensional cardiac velocity fields : Assessment of a differential method and application to 3D CT data,” Med Image Anal 1(3), 127–140 (1997).en
dcterms.bibliographicCitationBarba-J, L., Moya-Albor, E., Escalante-Ram´ırez, B., Brieva, J., and Venegas, E. V., “Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform,” Computers in Biology and Medicine 69, 189 – 202 (2016).en
dcterms.bibliographicCitationDuan, Q., Angelini, E., Homma, S., and Laine, A., “Validation of optical-flow for quantification of myocardial deformations on simulated RT3D ultrasound,” in [2007 4th IEEE International Symposium on Biomedical Imaging: From Nano to Macro], 944–947 (April 2007).en
dcterms.bibliographicCitationLeung, K. Y. E., Danilouchkine, M. G., van Stralen, M., de Jong, N., van der Steen, A. F. W., and Bosch, J. G., “Tracking left ventricular borders in 3d echocardiographic sequences using motion-guided optical flow,” Proc. SPIE 7259, 72590W–72590W–12 (2009).en
dcterms.bibliographicCitationHeyde, B., Cygan, S., Choi, H. F., Lesniak-Plewinska, B., Barbosa, D., Elen, A., Claus, P., Loeckx, D., Kaluzynski, K., and D’hooge, J., “Regional cardiac motion and strain estimation in three-dimensional echocardiography: a validation study in thick-walled univentricular phantoms,” IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control 59, 668–682 (April 2012).en
dcterms.bibliographicCitationDuan, Q., Angelini, E. D., Herz, S. L., Ingrassia, C. M., Gerard, O., Costa, K. D., Holmes, J. W., and Laine, A. F., “Evaluation of optical flow algorithms for tracking endocardial surfaces on three-dimensional ultrasound data,” Proc. SPIE 5750, 159–169 (2005).en
dcterms.bibliographicCitationSakitt, B. and Barlow, H., “A Model for the Economical Encoding of the Visual Image in Cerebral Cortex,” Biological Cybernetics 43(2), 97–108 (1982).en
dcterms.bibliographicCitationYoung, R., [The Gaussian Derivative Theory of Spatial Vision: Analysis of Cortical Cell Receptive Field Line-weighting Profiles], Research publication, General Motors Research Laboratories (1985).en
dcterms.bibliographicCitationMartens, J.-B., “The Hermite Transform-Theory,” IEEE Transactions on Acoustics, Speech and Signal Processing 38(9), 1595–1606 (1990).en
dcterms.bibliographicCitationMartens, J.-B., “The Hermite Transform-Applications,” IEEE Transactions on Acoustics, Speech and Signal Processing 38(9), 1607–1618 (1990).en
dcterms.bibliographicCitationHorn, B. K. P. and Schunck, B. G., “Determining optical flow,” Artificial Intelligence 17, 185–203 (1981).en
dcterms.bibliographicCitationMoya-Albor, E., Escalante-Ram´ırez, B., and Vallejo, E., “Optical flow estimation in cardiac CT images using the steered Hermite transform,” Signal Processing: Image Communication 28, 267–291 (Mar. 2013).en
dcterms.bibliographicCitationMarr, D. and Hildreth, E., “A theory of edge detection,” in [The Royal Society of London], B 207(1167), 187–217 (1980).en
dcterms.bibliographicCitationBloom, J. and Reed, T., “A gaussian derivative-based transform,” IEEE Transactions on Image Processing 5, 551–553 (mar 1996).en
dcterms.bibliographicCitationVan Dijk, A. M. and Martens, J., “Image representation and compression with steered Hermite transforms,” Signal Processing 56(1), 1–16 (1997).en
dcterms.bibliographicCitationFleet, D. J. and Jepson, A. D., “Computation of component image velocity from local phase information,” International Journal of Computer Vision 5(1), 77–104 (1990).en
dcterms.bibliographicCitationBarron, J. L., Fleet, D. J., Beauchemin, S. S., and Burkitt, T. A., “Performance of optical flow techniques,” in [Computer Vision and Pattern Recognition, 1992. Proceedings CVPR ’92., 1992 IEEE Computer Society Conference on], 236–242 (Jun 1992).en
dcterms.bibliographicCitationOtte, M. and Nagel, H. H., [Optical flow estimation: Advances and comparisons], 49–60, Springer Berlin Heidelberg, Berlin, Heidelberg (1994).en
dcterms.bibliographicCitationEscalante-Ram´ırez, B. and Silv´an-C´ardenas, J. L., “Advanced modeling of visual information processing: A multiresolution directional-oriented image transform based on Gaussian derivatives,” Signal Processing: Image Communication 20(9-10), 801–812 (2005).en
dcterms.bibliographicCitationSilv´an-C´ardenas, J. L. and Escalante-Ram´ırez, B., “The multiscale hermite transform for local orientation analysis,” IEEE Transactions on Image Processing 15(5), 1236–1253 (2006).en
dc.description.versionVersión del editores

Files in this item


There are no files associated with this item.

This item appears in the following Collection(s)

Show simple item record

Acceso Cerrado
Except where otherwise noted, this item's license is described as Acceso Cerrado