Show simple item record

dc.contributor.authorRoldan-Valadez, Ernesto
dc.contributor.otherCampus Ciudad de Méxicoes
dc.identifier.citationRamirez Carmona, R., García Lazaro, H. G., Dominguez Corrales, B., Aguilar Castañeda, E. y Roldan-Valadez, E. (2016). Main effects and interactions of cerebral hemispheres, gender, and age in the calculation of volumes and asymmetries of selected structures of episodic memory. Functional Neurology, 31 (4), 257-264. DOI:
dc.description.abstractThe aim of this study was to clarify the influence of anatomical (cerebral hemisphere) and demographic (age and gender) variables on the gray matter (GM) volumes and volumetric asymmetry indices (VAIs) of selected structures involved in episodic memory. A cross-sectional study was performed in 47 healthy volunteers. Neuropsychological evaluation revealed similar IQs across the sample. Using SPM-based software, brain segmentation, labeling and volume measurements of the hippocampus, amygdala, middle temporal gyrus and parahippocampal gyrus were performed in each cerebral hemisphere. A two-way between-groups multivariate analysis of covariance (MANCOVA) was applied to GM volumes and VAIs. The main effects of gender and cerebral hemisphere on GM volumes were significant (p <.001), while there was no significant interaction effect between gender and cerebral hemisphere. VAI measurements showed a nonsignificant effect of gender, but a significant influence of age (p =.015). The linear model of interactions and main effects explained 33% of the variance influencing the GM volume quantification. While cerebral hemisphere and gender were found to affect the volumes of brain structures involved in episodic memory, the calculation of VAIs was affected only by age. A comprehensive understanding of the main effects and interaction effects of cerebral hemisphere, gender and age on the volumes and asymmetries of structures related to episodic memory might help neurologists, psychiatrists, geriatricians and other neuroscientists in the study of degenerative brain diseases. © 2016, CIC Edizioni Internazionali s.r.l. All rights reserved.en
dc.publisherCIC Edizioni Internazionali s.r.l.
dc.relation.ispartofREPOSITORIO SCRIPTAes
dc.rightsAcceso Abiertoes
dc.sourceFunctional Neurologyen
dc.subjectEpisodic memoryen
dc.subjectLimbic systemen
dc.subjectMagnetic resonance imagingen
dc.subjectMultivariate analysisen
dc.subjectBrain asymmetryen
dc.subjectCross-sectional studyen
dc.subjectEpisodic memoryen
dc.subjectHuman experimenten
dc.subjectLimbic systemen
dc.subjectNormal humanen
dc.subjectNuclear magnetic resonance imagingen
dc.subjectParahippocampal gyrusen
dc.subjectSubarachnoid spaceen
dc.subjectAnatomy and histologyen
dc.subjectGray matteren
dc.subjectNeuropsychological testen
dc.subjectSex differenceen
dc.subjectYoung adulten
dc.subjectAge factorsen
dc.subjectCross sectional studiesen
dc.subject.classificationMEDICINA Y CIENCIAS DE LA SALUDes
dc.subject.classificationCiencias de la Saludes
dc.titleMain effects and interactions of cerebral hemispheres, gender, and age in the calculation of volumes and asymmetries of selected structures of episodic memoryen
dcterms.bibliographicCitationAlemán-Gómez Y, Melie-García L, Valdés-Hernández P (2006). IBASPM: toolbox for automatic parcellation of brain structures. Paper read at 12th Annual Meeting of the Organization for Human Brain Mapping, at Florence, Italy.
dcterms.bibliographicCitationBarrós-Loscertales A, Garavan H, Bustamante JC, et al (2011). Reduced striatal volume in cocaine-dependent patients. Neuroimage 56:1021-1026.en
dcterms.bibliographicCitationBeck AT, Steer RA, Brown GK (1996). Manual for the Beck Depression Inventory-II. San Antonio, TX, Psychological Corporation.en
dcterms.bibliographicCitationBernasconi N, Bernasconi A, Caramanos Z, et al (2003). Mesial temporal damage in temporal lobe epilepsy: a volumetric MRI study of the hippocampus, amygdala and parahippocampal region. Brain 126:462-469.en
dcterms.bibliographicCitationBigler ED, Anderson CV, Blatter DD (2002). Temporal lobe morphology in normal aging and traumatic brain injury. AJNR Am J Neuroradiol 23:255-266.en
dcterms.bibliographicCitationChiang GC, Insel PS, Tosun D, et al (2010). Hippocampal atrophy rates and CSF biomarkers in elderly APOE2 normal subjects. Neurology 75:1976-1981.en
dcterms.bibliographicCitationCoffey CE, Wilkinson WE, Parashos IA, et al (1992). Quantitative cerebral anatomy of the aging human brain: a crosssectional study using magnetic resonance imaging. Neurology 42:527-536.en
dcterms.bibliographicCitationCohen JW (1988). Statistical Power Analysis for the Behavioral Sciences. 2nd ed. Hillsdale, NJ, Lawrence Erlbaum Associates.en
dcterms.bibliographicCitationCourchesne E, Chisum HJ, Townsend J, et al (2000). Normal brain development and aging: quantitative analysis at in vivo MR imaging in healthy volunteers. Radiology 216:672-682.en
dcterms.bibliographicCitationDickerson BC, Sperling RA (2008). Functional abnormalities of the medial temporal lobe memory system in mild cognitive impairment and Alzheimer’s disease: insights from functional MRI studies. Neuropsychologia 46:1624-1635.en
dcterms.bibliographicCitationDu AT, Schuff N, Amend D, et al (2001). Magnetic resonance imaging of the entorhinal cortex and hippocampus in mild cognitive impairment and Alzheimer’s disease. J Neurol Neurosurg Psychiatry 71:441-447.en
dcterms.bibliographicCitationFriston K, Ashburner J, Heather J, et al (2003). SPM2. (Last access date: July 28, 2013)en
dcterms.bibliographicCitationGonçalves-Pereira PM, Oliveira E, Insausti R (2006). [Quantitative volumetric analysis of the hippocampus, amygdala and entorhinal cortex: normative database for the adult Portuguese population]. Rev Neurol 42:713-722. Spanish.en
dcterms.bibliographicCitationGonçalves Pereira PM, Insausti R, Artacho-Pérula E, et al (2005). MR volumetric analysis of the piriform cortex and cortical amygdala in drug-refractory temporal lobe epilepsy. AJNR Am J Neuroradiol 26:319-332.en
dcterms.bibliographicCitationGur RE, Turetsky BI, Cowell PE, et al (2000). Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry 57:769-775.en
dcterms.bibliographicCitationHänggi J, Streffer J, Jäncke L, et al (2011). Volumes of lateral temporal and parietal structures distinguish between healthy aging, mild cognitive impairment, and Alzheimer’s disease. J Alzheimers Dis 26:719-734.en
dcterms.bibliographicCitationInsausti R, Juottonen K, Soininen H, et al (1998). MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. AJNR Am J Neuroradiol 19:659-671.en
dcterms.bibliographicCitationJoshi AA, Joshi SH, Dinov ID, et al (2010). Anatomical structural network analysis of human brain using partial correlations of gray matter volumes. In: International Symposium on Biomedical Imaging: From Nano to Macro. Proceedings of the 2010 IEEE. Rotterdam, The Netherlands, ISBI.en
dcterms.bibliographicCitationKalus P, Slotboom J, Gallinat J, et al (2005). New evidence for involvement of the entorhinal region in schizophrenia: a combined MRI volumetric and DTI study. Neuroimage 24:1122-1129.en
dcterms.bibliographicCitationKopelman MD (2002). Disorders of memory. Brain 125:2152-2190.en
dcterms.bibliographicCitationKovalev VA, Kruggel F, von Cramon DY (2003). Gender and age effects in structural brain asymmetry as measured by MRI texture analysis. Neuroimage 19:895-905.en
dcterms.bibliographicCitationMaltbie E, Bhatt K, Paniagua B, et al (2012). Asymmetric bias in user guided segmentations of brain structures. Neuroimage 59:1315-1323.en
dcterms.bibliographicCitationMarkowitsch HJ, Staniloiu A (2011). Amygdala in action: relaying biological and social significance to autobiographical memory. Neuropsychologia 49:718-733.en
dcterms.bibliographicCitationMatsumae M, Kikinis R, Mórocz IA, et al (1996). Age-related changes in intracranial compartment volumes in normal adults assessed by magnetic resonance imaging. J Neurosurg 84:982-991.en
dcterms.bibliographicCitationMouton PR, Martin LJ, Calhoun ME, et al (1998). Cognitive decline strongly correlates with cortical atrophy in Alzheimer’s dementia. Neurobiol Aging 19:371-377.en
dcterms.bibliographicCitationPallant J (2011). Analysis of covariance. In: Pallant J (Ed) SPSS Survival Manual. Crows Nest, NSW, Australia, Allen & Unwin, pp. 297-318.en
dcterms.bibliographicCitationReyes-de-Beaman S, Beaman PE, Garcia -Pena C, et al (2004). Validation of a modified version of the Mini-Mental State Examination (MMSE) in Spanish. Aging, Neuropsychology and Cognition 11:1-11.en
dcterms.bibliographicCitationRoldan-Valadez E, Suarez-May MA, Favila R. et al (2015). Selected gray matter volumes and gender but not basal ganglia nor cerebellum gyri discriminate left versus right cerebral hemispheres: multivariate analyses in human brains at 3T. Anat Rec (Hoboken) 298:1336-1346.en
dcterms.bibliographicCitationRoldan-Valadez E, Rios C, Suarez-May MA, et al (2013). Main effect and interactions of brain regions and gender in the calculation of volumetric asymmetry indices in healthy human brains: ANCOVA analyses of in vivo 3T MRI data. Anat Rec (Hoboken) 296:1913-1922.en
dcterms.bibliographicCitationSperling RA, Dickerson BC, Pihlajamaki M, et al (2010). Functional alterations in memory networks in early Alzheimer’s disease. Neuromolecular Med 12:27-43.en
dcterms.bibliographicCitationSquire LR (2009). Memory and brain systems: 1969-2009. J Neurosci 29:12711-12716.en
dcterms.bibliographicCitationSquire LR (2004). Memory systems of the brain: a brief history and current perspective. Neurobiol Learn Mem 82:171-177.en
dcterms.bibliographicCitationSquire LR, Stark CE, Clark RE (2004). The medial temporal lobe. Annu Rev Neurosci 27:279-306.en
dcterms.bibliographicCitationTae WS, Kim SS, Lee KU, et al (2008). Validation of hippocampal volumes measured using a manual method and two automated methods (FreeSurfer and IBASPM) in chronic major depressive disorder. Neuroradiology 50:569-581.en
dcterms.bibliographicCitationTrivedi MA, Stoub TR, Murphy CM, et al (2011). Entorhinal cortex volume is associated with episodic memory related brain activation in normal aging and amnesic mild cognitive impairment. Brain Imaging Behav 5:126-136.en
dcterms.bibliographicCitationTzourio-Mazoyer N, Landeau B, Papathanassiou D, et al (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage 15:273-289.en
dcterms.bibliographicCitationWatson C, Andermann F, Gloor P, et al (1992). Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 42:1743-1750.en
dcterms.bibliographicCitationWatson C, Andermann F, Gloor P, et al (1992). Anatomic basis of amygdaloid and hippocampal volume measurement by magnetic resonance imaging. Neurology 42:1743-1750.en
dcterms.bibliographicCitationWechsler D (1997). Manual for the Wechsler Adult Intelligence Scale. 3rd ed. San Antonio,TX, Psychological Corporation.en
dcterms.bibliographicCitationWu WC, Huang CC, Chung HW, et al (2005). Hippocampal alterations in children with temporal lobe epilepsy with or without a history of febrile convulsions: evaluations with MR volumetry and proton MR spectroscopy. AJNR Am J Neuroradiol 26:1270-1275.en
dcterms.bibliographicCitationYokum S, Ng J, Stice E (2012). Relation of regional gray and white matter volumes to current BMI and future increases in BMI: a prospective MRI study. Int J Obes (Lond) 36:656-664.en
dc.description.versionVersión del editores

Files in this item


This item appears in the following Collection(s)

Show simple item record

Acceso Abierto
Except where otherwise noted, this item's license is described as Acceso Abierto