Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Mobile Robot with Movement Detection Controlled by a Real-Time Optical Flow Hermite Transform

2015 , Moya-Albor, Ernesto , Brieva, Jorge , Ponce, Hiram

This chapter presents a new algorithm inspired in the human visual system to compute optical flow in real-time based on the Hermite Transform. This algorithm is applied in a vision-based control system for a mobile robot. Its performance is compared for different texture scenarios with the classical Horn and Schunck algorithm. The design of the nature-inspired controller is based on the agent-environment model and agent’s architecture. Moreover, a case study of a robotic system with the proposed real-time Hermite optical flow method was implemented for braking and steering when mobile obstacles are close to the robot. Experimental results showed the controller to be fast enough for real-time applications, be robust to different background textures and colors, and its performance does not depend on inner parameters of the robotic system. © Springer International Publishing Switzerland 2016.

No Thumbnail Available
Publication

Non-contact breathing rate monitoring system based on a Hermite video magnification technique

2018 , Brieva, Jorge , Moya-Albor, Ernesto , Yael Rivas Scott, Orlando , Ponce, Hiram

In this paper we present a new non-contact strategy to estimate the breathing rate based on the Eulerian motion magnification technique and a system based on di€erent images processing steps. After the magnification procedure, a ROI is selected manually, an enhancement algorithm based on an adaptive histogram equalization is applied and finally the frames are binarized using the Otsu algorithm. Morphological operations are carry out on the video frames and a tracking temporal strategy is implemented to estimate the breathing rate. The magnification procedure was carried out using an Hermite decomposition. We have tested the method on three subjects in four positions (seat, lying face down, lying face up and lying in fetal position). The motion magnification approach is compared to the Laplacian decomposition strategy computing the mean absolute error. © SPIE. Downloading of the abstract is permitted for personal use only.