Now showing 1 - 2 of 2
No Thumbnail Available
Publication

A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset

2019 , Espinosa Loera, Ricardo Abel , Ponce, Hiram , Moya-Albor, Ernesto , Martinez-Villaseñor, Lourdes , Brieva, Jorge , Gutiérrez, Sebastián

The automatic recognition of human falls is currently an important topic of research for the computer vision and artificial intelligence communities. In image analysis, it is common to use a vision-based approach for fall detection and classification systems due to the recent exponential increase in the use of cameras. Moreover, deep learning techniques have revolutionized vision-based approaches. These techniques are considered robust and reliable solutions for detection and classification problems, mostly using convolutional neural networks (CNNs). Recently, our research group released a public multimodal dataset for fall detection called the UP-Fall Detection dataset, and studies on modality approaches for fall detection and classification are required. Focusing only on a vision-based approach, in this paper, we present a fall detection system based on a 2D CNN inference method and multiple cameras. This approach analyzes images in fixed time windows and extracts features using an optical flow method that obtains information on the relative motion between two consecutive images. We tested this approach on our public dataset, and the results showed that our proposed multi-vision-based approach detects human falls and achieves an accuracy of 95.64% compared to state-of-the-art methods with a simple CNN network architecture. © 2019 Elsevier Ltd

No Thumbnail Available
Publication

Non-Contact Breathing Rate Estimation Using Machine Learning with an Optimized Architecture

2023 , Brieva, Jorge , Ponce, Hiram , Moya-Albor, Ernesto

The breathing rate monitoring is an important measure in medical applications and daily physical activities. The contact sensors have shown their effectiveness for breathing monitoring and have been mostly used as a standard reference, but with some disadvantages for example in burns patients with vulnerable skins. Contactless monitoring systems are then gaining attention for respiratory frequency detection. We propose a new non-contact technique to estimate the breathing rate based on the motion video magnification method by means of the Hermite transform and an Artificial Hydrocarbon Network (AHN). The chest movements are tracked by the system without the use of an ROI in the image video. The machine learning system classifies the frames as inhalation or exhalation using a Bayesian-optimized AHN. The method was compared using an optimized Convolutional Neural Network (CNN). This proposal has been tested on a Data-Set containing ten healthy subjects in four positions. The percentage error and the Bland–Altman analysis is used to compare the performance of the strategies estimating the breathing rate. Besides, the Bland–Altman analysis is used to search for the agreement of the estimation to the reference.The percentage error for the AHN method is (Formula presented.) with and agreement with respect of the reference of ≈99%. © 2023 by the authors.