Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Multi-threaded Spotted Hyena Optimizer with thread-crossing techniques

2021 , Martínez Ríos, Félix Orlando , Murillo-Suarez, Alfonso

This paper presents a Multi-threaded version of the Spotted Hyena Optimizer algorithm with thread-crossing techniques (MT-SHO) to improve the ability of the algorithm to explore the search space. The original algorithm is inspired by the hunting behavior of the spotted hyena. Along the different sections of the work, we explain in detail how the original algorithm simulates the spotted hyena's behavior to optimize highly complex mathematical functions and how we handle the procedures and results of the multi-threaded version, with thread-crossing techniques that improve the ability to explore and exploit the search space by letting threads learn between them. We present the experiments used to determine the best value of the parameters used in the parallel version of the algorithm and to prove that our proposal obtains significantly good results we compare the results obtained by evaluating 24 benchmark functions with the results published for the original algorithm as well as other metaheuristic algorithms. © 2021 Elsevier B.V.. All rights reserved.

No Thumbnail Available
Publication

A multiprocess Salp swarm optimization with a heuristic based on crossing partial solutions

2021 , Martínez Ríos, Félix Orlando , Murillo-Suarez, Alfonso

The Salp swarm algorithm (SSA) is one of the most recent metaheuristic optimization algorithms. SSA has been used succesfully to solve optimization problems in different research areas such as machine learning, engineering design, wireless networks, image processing, mobile robotics, and energy. In this article, we present a multi-threaded implementation of the SSA algorithm. Each thread executes an SSA algorithm that shares information among the swarms to get a better solution. The best partial solutions of each swarm intersect in a similar way of genetic algorithms. The experiments with nineteen benchmark functions (unimodal, multimodal, and composite) show the results obtained with this new algorithm are better than those achieved with the original algorithm. © 2020 The Authors. Published by Elsevier B.V.