Now showing 1 - 3 of 3
No Thumbnail Available
Publication

Vision-Based Analysis on Leaves of Tomato Crops for Classifying Nutrient Deficiency using Convolutional Neural Networks

2020 , Cevallos Vega, Claudio Sebastián , Ponce, Hiram , Moya-Albor, Ernesto , Brieva, Jorge

Tomato crops are one of the most important agricultural products at economic level in the world. However, the quality of the tomato fruits is highly dependent to the growing conditions such as the nutrients. One of consequences of the latter during tomato harvesting is nutrient deficiency. Manually, it is possible to anticipate the lack of primary nutrients (i.e. nitrogen, phosphorus and potassium) by looking the appearance of the leaves in tomato plants. Thus, this paper presents a supervised vision-based monitoring system for detecting nutrients deficiencies in tomato crops by taking images from the leaves of the plants. It uses a Convolutional Neural Network (CNN) to recognize and classify the type of nutrient that is deficient in the plants. First, we created a data set of images of leaves of tomato plants showing different symptoms due to the nutrient deficiency. Then, we trained a suitable CNN-model with our images and other augmented data. Experimental results showed that our CNN-model can achieve 86.57% of accuracy. We anticipate the implementation of our proposal for future precision agriculture applications such as automated nutrient level monitoring and control in tomato crops. © 2020 IEEE.

No Thumbnail Available
Publication

Preface : Advances in Soft Computing : 22nd Mexican International Conference on Artificial Intelligence, MICAI 2023, Yucatán, Mexico, November 13–18, 2023, Proceedings, Part II

2024-01-01 , Calvo, Hiram , Martinez-Villaseñor, Lourdes , Ponce, Hiram

The Mexican International Conference on Artificial Intelligence (MICAI) is a yearly international conference series that has been organized by the Mexican Society for Artificial Intelligence (SMIA) since 2000. MICAI is a major international artificial intelligence (AI) forum and the main event in the academic life of the country’s growing AI community. This year, MICAI 2023 was graciously hosted by the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS) and the Universidad Autónoma del Estado de Yucatán (UAEY). The conference presented a cornucopia of scientific endeavors. ©Springer.

No Thumbnail Available
Publication

A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset

2019 , Espinosa Loera, Ricardo Abel , Ponce, Hiram , Moya-Albor, Ernesto , Martinez-Villaseñor, Lourdes , Brieva, Jorge , Gutiérrez, Sebastián

The automatic recognition of human falls is currently an important topic of research for the computer vision and artificial intelligence communities. In image analysis, it is common to use a vision-based approach for fall detection and classification systems due to the recent exponential increase in the use of cameras. Moreover, deep learning techniques have revolutionized vision-based approaches. These techniques are considered robust and reliable solutions for detection and classification problems, mostly using convolutional neural networks (CNNs). Recently, our research group released a public multimodal dataset for fall detection called the UP-Fall Detection dataset, and studies on modality approaches for fall detection and classification are required. Focusing only on a vision-based approach, in this paper, we present a fall detection system based on a 2D CNN inference method and multiple cameras. This approach analyzes images in fixed time windows and extracts features using an optical flow method that obtains information on the relative motion between two consecutive images. We tested this approach on our public dataset, and the results showed that our proposed multi-vision-based approach detects human falls and achieves an accuracy of 95.64% compared to state-of-the-art methods with a simple CNN network architecture. © 2019 Elsevier Ltd