Now showing 1 - 2 of 2
No Thumbnail Available
Publication

Design and Analysis for Fall Detection System Simplification

2020 , Martinez-Villaseñor, Lourdes , Ponce, Hiram

This paper presents a methodology based on multimodal sensors to configure a simple, comfortable and fast fall detection and human activity recognition system that can be easily implemented and adopted. The methodology is based on the configuration of specific types of sensors, machine-learning methods and procedures. The protocol is divided into four phases: (1) database creation (2) data analysis (3) system simplification and (4) evaluation. Using this methodology, we created a multimodal database for fall detection and human activity recognition, namely UP-Fall Detection. It comprises data samples from 17 subjects that perform 5 types of falls and 6 different simple activities, during 3 trials. All information was gathered using 5 wearable sensors (tri-axis accelerometer, gyroscope and light intensity), 1 electroencephalograph helmet, 6 infrared sensors as ambient sensors, and 2 cameras in lateral and front viewpoints. The proposed novel methodology adds some important stages to perform a deep analysis of the following design issues in order to simplify a fall detection system: a) select which sensors or combination of sensors are to be used in a simple fall detection system, b) determine the best placement of the sources of information, and c) select the most suitable machine learning classification method for fall and human activity detection and recognition. Even though some multimodal approaches reported in literature only focus on one or two of the above-mentioned issues, our methodology allows simultaneously solving these three design problems related to a human fall and activity detection and recognition system. ©2020 Journal of visualized experiments : NLM (Medline)

No Thumbnail Available
Publication

Comparative Analysis of Artificial Hydrocarbon Networks and Data-Driven Approaches for Human Activity Recognition

2015 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis

In recent years computing and sensing technologies advances contribute to develop effective human activity recognition systems. In context-aware and ambient assistive living applications, classification of body postures and movements, aids in the development of health systems that improve the quality of life of the disabled and the elderly. In this paper we describe a comparative analysis of data-driven activity recognition techniques against a novel supervised learning technique called artificial hydrocarbon networks (AHN). We prove that artificial hydrocarbon networks are suitable for efficient body postures and movements classification, providing a comparison between its performance and other well-known supervised learning methods.