Now showing 1 - 10 of 23
No Thumbnail Available
Publication

Preface : Advances in Computational Intelligence : 22nd Mexican International Conference on Artificial Intelligence, MICAI 2023, Yucatán, Mexico, November 13–18, 2023, Proceedings, Part I

2024-01-01 , Calvo, Hiram , Martinez-Villaseñor, Lourdes , Ponce, Hiram , Zatarain-Cabada, Ramón , Montes Rivera, Martín , Mezura-Montes, Efrén

Conference proceedings front matter may contain various advertisements, welcome messages, committee or program information, and other miscellaneous conference information. This may in some cases also include the cover art, table of contents, copyright statements, title-page or half title-pages, blank pages, venue maps or other general information relating to the conference that was part of the original conference proceedings.

No Thumbnail Available
Publication

Ethical Design Framework for Artificial Intelligence Healthcare Technologies

2024-01-01 , Martinez-Villaseñor, Lourdes , Ponce, Hiram

The healthcare industry has undergone a profound transformation with the integration of artificial intelligence(AI) and emerging technologies, leading in a new era of personalized treatments and healthcare solutions. However, this technological advancement has not been without its ethical and practical challenges, which have hindered the real-world application of intelligent systems in clinical settings. Numerous international entities have published principles, guidelines, and regulations to tackle these issues, yet a significant gap persists between theoretical initiatives and the practical incorporation of ethical design in intelligent systems. Within this study, we delineate the substantial transformation taking place in the healthcare landscape due to artificial intelligence. We provide a condensed overview of the opportunities and challenges that accompany this disruptive shift. The main goal of this work is introducing an ethical design framework tailored to healthcare technologies and delineating the ethical design process for a machine learning-based support tool designed for Age-related Macular Degeneration risk assessment. To the best of our knowledge, this work represents one of the few documented instances of the practical implementation of ethical design principles in intelligent healthcare systems. © 2024 Springer Nature

No Thumbnail Available
Publication

Process of Concept Alignment for Interoperability between Heterogeneous Sources

2013 , Martinez-Villaseñor, Lourdes , González-Mendoza, Miguel

Some researchers in the community of user modeling envision the need to share and reuse information scattered over different user models of heterogeneous sources. In a multi-application environment each application and service must repeat the effort of building a user model to obtain just a narrow understanding of the user. Sharing and reusing information between models can prevent the user from repeated configurations, help deal with application and services’ “cold start” problem, and provide enrichment to user models to obtain a better understanding of the user. But gathering distributed user information from heterogeneous sources to achieve user models interoperability implies handling syntactic and semantic heterogeneity. In this paper, we present a process of concept alignment to automatically determine semantic mapping relations that enable the interoperability between heterogeneous profile suppliers and consumers, given the mediation of a central ubiquitous user model. We show that the process of concept alignment for interoperability based in a two-tier matching strategy can allow the interoperability between social networking applications, FOAF, Personal Health Records (PHR) and personal devices.

No Thumbnail Available
Publication

A Survey on Freezing of Gait Detection and Prediction in Parkinson’s Disease

2020 , Martinez-Villaseñor, Lourdes , Ponce, Hiram , Miralles-Pechuán, Luis

Most of Parkinson’s disease (PD) patients present a set of motor and non-motor symptoms and behaviors that vary during the day and from day-to-day. In particular, freezing of gait (FOG) impairs their quality of life and increases the risk of falling. Smart technology like mobile communication and wearable sensors can be used for detection and prediction of FOG, increasing the understanding of the complex PD. There are surveys reviewing works on Parkinson and/or technologies used to manage this disease. In this review, we summarize and analyze works addressing FOG detection and prediction based on wearable sensors, vision and other devices. We aim to identify trends, challenges and opportunities in the development of FOG detection and prediction systems. © 2020, Springer Nature Switzerland AG.

No Thumbnail Available
Publication

Artificial Hydrocarbon Networks for Online Sales Prediction

2015 , Ponce, Hiram , Miralles-Pechuán, Luis , Martinez-Villaseñor, Lourdes

Online retail sales have been growing worldwide in the last decade. In order to cope with this high dynamicity and market share competition, online retail sales prediction and online advertising have become very important to answer questions of pricing decisions, advertising responsiveness, and product demand. To make adequate investment in products and channels it is necessary to have a model that relates certain features of the product with the number of sales that will occur in the future. In this paper we describe a comparative analysis of machine learning techniques against a novel supervised learning technique called artificial hydrocarbon networks (AHN). This method is a new type of machine learning that have proved to adapt very well to a wide spectrum of problems of regression and classification. Thus, we use artificial hydrocarbon networks for predicting the number of online sales, and then we compare their performance with other ten well-known methods of machine learning regression, obtaining promising results.

No Thumbnail Available
Publication

Versatility of Artificial Hydrocarbon Networks for Supervised Learning

2018 , Ponce, Hiram , Martinez-Villaseñor, Lourdes

Surveys on supervised machine show that each technique has strengths and weaknesses that make each of them more suitable for a particular domain or learning task. No technique is capable to tackle every supervised learning task, and it is difficult to comply with all possible desirable features of each particular domain. However, it is important that a new technique comply with the most requirements and desirable features of as many domains and learning tasks as possible. In this paper, we presented artificial hydrocarbon networks (AHN) as versatile and efficient supervised learning method. We determined the ability of AHN to solve different problem domains, with different data-sources and to learn different tasks. The analysis considered six applications in which AHN was successfully applied. © Springer Nature Switzerland AG 2018.

No Thumbnail Available
Publication

Towards Constant Calculation in Disjunctive Inequalities Using Wound Treatment Optimization

2019 , Ponce, Hiram , Marmolejo Saucedo, José Antonio , Martinez-Villaseñor, Lourdes

When using the mixed-integer programming to model situations where the limit of the variables follows a box constraint, we find nonlinear problems. To solve this, linearization techniques of these disjunctive inequality constraints are typically used, including constants associated to the variable bounds called M-constants or big-M. Calculation of these constants is an open problem since their values affect the reliability of the optimal solution and convergence of the optimization algorithm. To solve this problem, this work proposes a new population-based metaheuristic optimization method, namely wound treatment optimization (WTO) for calculating the M-constant in a typical domain known as the fixed-charge transportation problem. WTO is inspired on the social wound treatment present in ants after raids. This method allows population diversity that allows to find near-optimal solutions. Experiments of the WTO method on the fixed-charge transportation problem validated its performance and efficiency to find tighten solutions of the M-constant that minimizes the objective function of the problem. © Springer Nature Switzerland AG 2019.

No Thumbnail Available
Publication

Consumption of Profile Information from Heterogeneous Sources to Leverage Human-Computer Interaction

2013 , Martinez-Villaseñor, Lourdes , González-Mendoza, Miguel

Ubiquitous computing brings new challenges to system and application designers. It is not enough to deliver information at any time, at any place and in any form; information must be relevant to the user. Ubiquitous user model interoperability allows enrichment of adaptive systems obtaining a better understanding of the user, but conflict resolution is necessary to deliver the best suited values despite the existence of international standards for different concepts. In this paper, we present the algorithm of conflict resolution to consume of profile information from the ubiquitous user model. We illustrate the enrichment of user models with one elemental concept for human-computer interaction: the language concept.

No Thumbnail Available
Publication

Approaching Fall Classification Using the UP-Fall Detection Dataset: Analysis and Results from an International Competition

2020 , Ponce, Hiram , Martinez-Villaseñor, Lourdes

This chapter presents the results of the Challenge UP – Multimodal Fall Detection competition that was held during the 2019 International Joint Conference on Neural Networks (IJCNN 2019). This competition lies on the fall classification problem, and it aims to classify eleven human activities (i.e. five types of falls and six simple daily activities) using the joint information from different wearables, ambient sensors and video recordings, stored in a given dataset. After five months of competition, three winners and one honorific mention were awarded during the conference event. The machine learning model from the first place scored$$82.47\%$$ in$$F:1$$-score, outperforming the baseline of$$70.44\%$$. After analyzing the implementations from the participants, we summarized the insights and trends of fall classification. © 2020, Springer Nature Switzerland AG.

No Thumbnail Available
Publication

Fuzzy-Based Approach of Concept Alignment

2017 , Martinez-Villaseñor, Lourdes , González-Mendoza, Miguel

The need to share and reuse information has grown in the new era of Internet of things and ubiquitous computing. Researchers in ontology and schema matching use mapping approaches in order to achieve interoperability between heterogeneous sources. The use of multiple similarity measures that take into account lexical, structural and semantic properties of the concepts is often found in schema matching for the purpose of data integration, sharing and reusing. Mappings identified by automatic or semi-automatic tools can never be certain. In this paper, we present a fuzzy-based approach to combine different similarity measures to deal with scenarios where ambiguity of terms hinder the process of alignment and add uncertainty to the match. © 2017, Springer International Publishing AG.