Now showing 1 - 5 of 5
No Thumbnail Available
Publication

Human Activity Recognition on Mobile Devices Using Artificial Hydrocarbon Networks

2018 , Ponce, Hiram , Miralles-Pechuán, Luis , González Mora, José Guillermo , Martinez-Villaseñor, Lourdes

Human activity recognition (HAR) aims to classify and identify activities based on data-driven from different devices, such as sensors or cameras. Particularly, mobile devices have been used for this recognition task. However, versatility of users, location of smartphones, battery, processing and storage limitations, among other issues have been identified. In that sense, this paper presents a human activity recognition system based on artificial hydrocarbon networks. This technique have been proved to be very effective on HAR systems using wearable sensors, so the present work proposes to use this learning method with the information provided by the in-sensors of mobile devices. Preliminary results proved that artificial hydrocarbon networks might be used as an alternative for human activity recognition on mobile devices. In addition, a real dataset created for this work has been published. © Springer Nature Switzerland AG 2018.

No Thumbnail Available
Publication

A Survey on Freezing of Gait Detection and Prediction in Parkinson’s Disease

2020 , Martinez-Villaseñor, Lourdes , Ponce, Hiram , Miralles-Pechuán, Luis

Most of Parkinson’s disease (PD) patients present a set of motor and non-motor symptoms and behaviors that vary during the day and from day-to-day. In particular, freezing of gait (FOG) impairs their quality of life and increases the risk of falling. Smart technology like mobile communication and wearable sensors can be used for detection and prediction of FOG, increasing the understanding of the complex PD. There are surveys reviewing works on Parkinson and/or technologies used to manage this disease. In this review, we summarize and analyze works addressing FOG detection and prediction based on wearable sensors, vision and other devices. We aim to identify trends, challenges and opportunities in the development of FOG detection and prediction systems. © 2020, Springer Nature Switzerland AG.

No Thumbnail Available
Publication

Interoperability in Electronic Health Records Through the Mediation of Ubiquitous User Model

2016 , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis , González-Mendoza, Miguel

Martínez Villaseñor, M. de L., Miralles Pechuan, L. J. y González Mendoza, M. (2016). Interoperability in electronic health records through the mediation of ubiquitous user model. En: En: García, C, Caballero Gil, P., Burmester, M. y Quesada Arencibia, A. (editores), Ubiquitous Computing and Ambient Intelligence : 10th International Conference, UCAmI 2016, San Bartolomé de Tirajana, Gran Canaria, Spain, November 29 - December 2, 2016 (vol. 1), (pp. 190-200). Cham : Springer International Publishing. DOI: 10.1007/978-3-319-48746-5_19

No Thumbnail Available
Publication

Comparative Analysis of Artificial Hydrocarbon Networks and Data-Driven Approaches for Human Activity Recognition

2015 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis

In recent years computing and sensing technologies advances contribute to develop effective human activity recognition systems. In context-aware and ambient assistive living applications, classification of body postures and movements, aids in the development of health systems that improve the quality of life of the disabled and the elderly. In this paper we describe a comparative analysis of data-driven activity recognition techniques against a novel supervised learning technique called artificial hydrocarbon networks (AHN). We prove that artificial hydrocarbon networks are suitable for efficient body postures and movements classification, providing a comparison between its performance and other well-known supervised learning methods.

No Thumbnail Available
Publication

Artificial Hydrocarbon Networks for Online Sales Prediction

2015 , Ponce, Hiram , Miralles-Pechuán, Luis , Martinez-Villaseñor, Lourdes

Online retail sales have been growing worldwide in the last decade. In order to cope with this high dynamicity and market share competition, online retail sales prediction and online advertising have become very important to answer questions of pricing decisions, advertising responsiveness, and product demand. To make adequate investment in products and channels it is necessary to have a model that relates certain features of the product with the number of sales that will occur in the future. In this paper we describe a comparative analysis of machine learning techniques against a novel supervised learning technique called artificial hydrocarbon networks (AHN). This method is a new type of machine learning that have proved to adapt very well to a wide spectrum of problems of regression and classification. Thus, we use artificial hydrocarbon networks for predicting the number of online sales, and then we compare their performance with other ten well-known methods of machine learning regression, obtaining promising results.