Now showing 1 - 7 of 7
No Thumbnail Available
Publication

Versatility of Artificial Hydrocarbon Networks for Supervised Learning

2018 , Ponce, Hiram , Martinez-Villaseñor, Lourdes

Surveys on supervised machine show that each technique has strengths and weaknesses that make each of them more suitable for a particular domain or learning task. No technique is capable to tackle every supervised learning task, and it is difficult to comply with all possible desirable features of each particular domain. However, it is important that a new technique comply with the most requirements and desirable features of as many domains and learning tasks as possible. In this paper, we presented artificial hydrocarbon networks (AHN) as versatile and efficient supervised learning method. We determined the ability of AHN to solve different problem domains, with different data-sources and to learn different tasks. The analysis considered six applications in which AHN was successfully applied. © Springer Nature Switzerland AG 2018.

No Thumbnail Available
Publication

A Genetic Algorithm to Solve Power System Expansion Planning with Renewable Energy

2018 , Martinez-Villaseñor, Lourdes , Ponce, Hiram , Marmolejo Saucedo, José Antonio , Ramírez, Juan Manuel , Hernández, Agustina

In this paper, a deterministic dynamic mixed-integer programming model for solving the generation and transmission expansion-planning problem is addressed. The proposed model integrates conventional generation with renewable energy sources and it is based on a centralized planned transmission expansion. Due a growing demand over time, it is necessary to generate expansion plans that can meet the future requirements of energy systems. Nowadays, in most systems a public entity develops both the short and long of electricity-grid expansion planning and mainly deterministic methods are employed. In this study, an heuristic optimization approach based on genetic algorithms is presented. Numerical results show the performance of the proposed algorithm. © 2018, Springer Nature Switzerland AG.

No Thumbnail Available
Publication

The Language of Nature and Artificial Intelligence in Patient Care

2023 , Enríquez, Teresa , Alonso-Stuyck, Paloma , Martinez-Villaseñor, Lourdes

Given the development of artificial intelligence (AI) and the conditions of vulnerability of large sectors of the population, the question emerges: what are the ethical limits of technologies in patient care? This paper examines this question in the light of the "language of nature" and of Aristotelian causal analysis, in particular the concept of means and ends. Thus, it is possible to point out the root of the distinction between the identity of the person and the entity of any technology. Nature indicates that the person is always an end in itself. Technology, on the contrary, should only be a means to serve the person. The diversity of their respective natures also explains why their respective agencies enjoy diverse scopes. Technological operations (artificial agency, artificial intelligence) find their meaning in the results obtained through them (poiesis). Moreover, the person is capable of actions whose purpose is precisely the action itself (praxis), in which personal agency and, ultimately, the person themselves, is irreplaceable. Forgetting the distinction between what, by nature, is an end and what can only be a means is equivalent to losing sight of the instrumental nature of AI and, therefore, its specific meaning: the greatest good of the patient. It is concluded that the language of nature serves as a filter that supports the effective subordination of the use of AI to its specific purpose, the human good. The greatest contribution of this work is to draw attention to the nature of the person and technology, and about their respective agencies. In other words: listening to the language of nature, and attending to the diverse nature of the person and technology, personal agency, and artificial agency.

No Thumbnail Available
Publication

Preface : Advances in Soft Computing : 22nd Mexican International Conference on Artificial Intelligence, MICAI 2023, Yucatán, Mexico, November 13–18, 2023, Proceedings, Part II

2024-01-01 , Calvo, Hiram , Martinez-Villaseñor, Lourdes , Ponce, Hiram

The Mexican International Conference on Artificial Intelligence (MICAI) is a yearly international conference series that has been organized by the Mexican Society for Artificial Intelligence (SMIA) since 2000. MICAI is a major international artificial intelligence (AI) forum and the main event in the academic life of the country’s growing AI community. This year, MICAI 2023 was graciously hosted by the Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas (IIMAS) and the Universidad Autónoma del Estado de Yucatán (UAEY). The conference presented a cornucopia of scientific endeavors. ©Springer.

No Thumbnail Available
Publication

Modeling and Control Balance Design for a New Bio-inspired Four-Legged Robot

2019 , Ponce, Hiram , Acevedo, Mario , Morales, Elizabeth , Martinez-Villaseñor, Lourdes , Mayorga-Acosta, Carlos , Díaz Ramos, Gabriel

Bio-inspired robots have chosen to propose novel developments aiming to inhabit and interact complex and dynamic environments. Bio-inspired four-legged robots, typically inspired on animal locomotion, provide advantages on mobility, obstacle avoidance, energy efficiency and others. Balancing is a major challenge when legged robots require to move over uncertain and sharp terrains. It becomes of particular importance to solve other locomotion tasks such as walking, running or jumping. In this paper, we present a preliminary study on the modeling and control balance design of a bio-inspired four-legged robot for standing on its aligned legs in a straight line. The proposed robot is loosely inspired on the bio-mechanics of the chameleon. Thus, a mathematical modeling, simulation, intelligent control strategy, prototype implementation and preliminary results of control balance in our robot are presented and discussed. © Springer Nature Switzerland AG 2019.

No Thumbnail Available
Publication

A Survey on Freezing of Gait Detection and Prediction in Parkinson’s Disease

2020 , Martinez-Villaseñor, Lourdes , Ponce, Hiram , Miralles-Pechuán, Luis

Most of Parkinson’s disease (PD) patients present a set of motor and non-motor symptoms and behaviors that vary during the day and from day-to-day. In particular, freezing of gait (FOG) impairs their quality of life and increases the risk of falling. Smart technology like mobile communication and wearable sensors can be used for detection and prediction of FOG, increasing the understanding of the complex PD. There are surveys reviewing works on Parkinson and/or technologies used to manage this disease. In this review, we summarize and analyze works addressing FOG detection and prediction based on wearable sensors, vision and other devices. We aim to identify trends, challenges and opportunities in the development of FOG detection and prediction systems. © 2020, Springer Nature Switzerland AG.

No Thumbnail Available
Publication

Feature Selection Methods Evaluation for CTR Estimation

2016 , Miralles-Pechuán, Luis , Ponce, Hiram , Martinez-Villaseñor, Lourdes

The most widespread payment model in online advertising is Cost-per-click (CPC). In this model the advertisers pay each time that a user generates a click. In order to enhance the income of CPC Advertising Networks, it is necessary to give priority to the most profitable adverts. The most important factor in the profitability of an advert is Click-through-rate (CTR), which is the probability that a user generates a click in a given advert. In this paper we find which feature selection method between PCA, RFE, Gain ratio and NSGA-II is better suited, or if otherwise, the machine learning classification methods work best without any feature selection method. ©2016 IEE