Now showing 1 - 1 of 1
No Thumbnail Available
Publication

A machine learning-based analytical intelligence system for forecasting demand of new products based on chlorophyll : a hybrid approach

2024 , Rodríguez Aguilar, Román , Marmolejo Saucedo, José Antonio , Garcia-Llamas, Eduardo , Rodríguez-Aguilar, Miriam , Marmolejo-Saucedo, Liliana

This manuscript addresses the problem of forecasting the demand for innovative products with limited and inhomogeneous sales data over time. The main objective of the study is to use the information available from a group of innovative chlorophyll-based food products to build a coherent demand forecasting system. From a transactional database, time series were constructed for each group of products, analyzing the stationarity and seasonality of the time series through the Dickey–Fuller and Canova–Hansen tests. Likewise, an ARIMA model, a long short-term memory (LSTM) recurrent deep neural network, and a support vector machine (SVM) were trained to select the best model for each product based on a forecast performance metric. A comparison between classical forecasting techniques and machine learning models is shown. The LSTM neural network was the best model for most products because the internal architecture of the network allows not only to capture non-linear relationships between variables but is also capable of controlling the flow of information to preserve characteristics over time that are relevant for forecasts. The second-best model was the SVM, which allows capturing non-linear behaviors through kernel functions and uses a smaller amount of data for its estimation. Finally, the ARIMA model presented the lowest performance for all products. The objective of having various methodologies is that the system allows the best forecast to be selected according to the type of product, availability of information and methodology used, which will allow the company to integrate new products into the system over time. ©Springer