Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. Damage Importance Analysis for Pavement Condition Index Using Machine-Learning Sensitivity Analysis
 
  • Details
Options

Damage Importance Analysis for Pavement Condition Index Using Machine-Learning Sensitivity Analysis

Journal
Infrastructures
ISSN
2412-3811
Date Issued
2024
Author(s)
Alejandro Pérez Carvajal
Facultad de Ingeniería - CampAGS  
Sánchez-Gómez, Claudia  
Facultad de Ingeniería - CampAGS  
Jonás Velasco
Type
Resource Types::text::journal::journal article
DOI
10.3390/infrastructures9090157
URL
https://scripta.up.edu.mx/handle/20.500.12552/11514
Abstract
<jats:p>The Pavement Condition Index (PCI) is a prevalent metric for assessing the condition of rigid pavements. The PCI calculation involves evaluating 19 types of damage. This study aims to analyze how different types of damage impact the PCI calculation and the impact of the performance of prediction models of PCI by reducing the number of evaluated damages. The Municipality of León, Gto., Mexico, provided a dataset of 5271 records. We evaluated five different decision-tree models to predict the PCI value. The Extra Trees model, which exhibited the best performance, was used to assess the feature importance of each type of damage, revealing their relative impacts on PCI predictions. To explore the potential for reducing the complexity of the PCI evaluation, we applied Sequential Forward Search and Brute Force Search techniques to analyze the performance of models with various feature combinations. Our findings indicate no significant statistical difference in terms of Mean Absolute Error (MAE) and the coefficient of determination (R2) between models trained with 13 features compared to those trained with all 17 features. For instance, a model using only eight damages achieved an MAE of 4.35 and an R2 of 0.89, comparable to the 3.56 MAE and 0.92 R2 obtained with a model using all 17 features. These results suggest that omitting some damages from the PCI calculation has a minimal impact on prediction accuracy but can substantially reduce the evaluation’s time and cost. In addition, knowing the most significant damages opens up the possibility of automating the evaluation of PCI using artificial intelligence.</jats:p>

Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback