Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. Distance Estimation Using a Bio-Inspired Optical Flow Strategy Applied to Neuro-Robotics
 
  • Details
Options

Distance Estimation Using a Bio-Inspired Optical Flow Strategy Applied to Neuro-Robotics

Journal
2018 International Joint Conference on Neural Networks (IJCNN)
Date Issued
2018
Author(s)
Ponce, Hiram  
Facultad de Ingeniería - CampCM  
Brieva, Jorge  
Facultad de Ingeniería - CampCM  
Moya-Albor, Ernesto  
Facultad de Ingeniería - CampCM  
Type
Resource Types::text::conference output::conference proceedings::conference paper
DOI
10.1109/IJCNN.2018.8489597
URL
https://scripta.up.edu.mx/handle/20.500.12552/4260
Abstract
Movement detection and characterization of a 3D scene are relevant tasks in vision systems and particularly in robotic applications controlled by visual features. One of the challenges to characterize a 3D scene in navigation systems is the depth estimation. In contrast to classical approaches using visual based stereo systems, we propose a monocular distance estimation system using convolutional neural networks (CNN) and a bio-inspired optical flow approach as part of a neuro-robotic system. We train the CNN using optical flow visual features guided by ultrasonic sensor-based measures in a 3D scenario. The datasets used are available in: http://sites.google.com/up.edu.mx/robotflow/. Experimental results confirm that a monocular camera can be applie for controlling the robot navigation and obstacle avoidance.

Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback