Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform
 
  • Details
Options

Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform

Journal
Computers in Biology and Medicine
ISSN
0010-4825
Date Issued
2016
Author(s)
Barba-J., Leiner
Moya-Albor, Ernesto  
Facultad de Ingeniería - CampCM  
Escalante-Ramírez, Boris
Brieva, Jorge  
Facultad de Ingeniería - CampCM  
Vallejo Venegas, Enrique
Type
Resource Types::text::journal::journal article
DOI
10.1016/j.compbiomed.2015.12.021
URL
https://scripta.up.edu.mx/handle/123456789/4442
Abstract
Purpose: The left ventricle and the myocardium are two of the most important parts of the heart used for cardiac evaluation. In this work a novel framework that combines two methods to isolate and display functional characteristics of the heart using sequences of cardiac computed tomography (CT) is proposed. A shape extraction method, which includes a new segmentation correction scheme, is performed jointly with a motion estimation approach.Methods: For the segmentation task we built a Spatiotemporal Point Distribution Model (STPDM) that encodes spatial and temporal variability of the heart structures. Intensity and gradient information guide the STPDM. We present a novel method to correct segmentation errors obtained with the STPDM. It consists of a deformable scheme that combines three types of image features: local histograms, gradients and binary patterns. A bio-inspired image representation model based on the Hermite transform is used for motion estimation. The segmentation allows isolating the structure of interest while the motion estimation can be used to characterize the movement of the complete heart muscle.Results: The work is evaluated with several sequences of cardiac CT. The left ventricle was used for evaluation. Several metrics were used to validate the proposed framework. The efficiency of our method is also demonstrated by comparing with other techniques.Conclusion: The implemented tool can enable physicians to better identify mechanical problems. The new correction scheme substantially improves the segmentation performance. Reported results demonstrate that this work is a promising technique for heart mechanical assessment. © 2016 Elsevier Ltd.

Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback