Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. Click-event sound detection in automotive industry using machine/deep learning
 
  • Details
Options

Click-event sound detection in automotive industry using machine/deep learning

Journal
Applied Soft Computing
ISSN
1568-4946
Date Issued
2021
Author(s)
Espinosa Loera, Ricardo Abel  
Facultad de Ingeniería - CampAGS  
Ponce, Hiram  
Facultad de Ingeniería - CampCM  
Gutiérrez, Sebastián
Facultad de Ingeniería - CampAGS  
Type
Resource Types::text::journal::journal article
DOI
10.1016/j.asoc.2021.107465
URL
https://scripta.up.edu.mx/handle/20.500.12552/3242
Abstract
In the automotive industry, despite the robotic systems on the production lines, factories continue employing workers in several custom tasks getting for semi-automatic assembly operations. Specifically, the assembly of electrical harnesses of engines comprises a set of connections between electrical components. Despite the task is easy to perform, employees tend not to notice that a few components are not being connected properly due to physical fatigue provoked by repetitive tasks. This yields a low quality of the assembly production line and possible hazards. In this work, we propose a sound detection system based on machine/deep learning (ML/DL) approaches to identify click sounds produced when electrical harnesses are connected. The purpose of this system is to count the number of connections properly made and to feedback to the employees. We collect and release a public dataset of 25,000 click sounds of 25 ms length at 22 kHz during three months of assembly operations in an automotive production line located in Mexico. Then, we design an ML/DL-based methodology for click sound detection of assembled harnesses under real conditions of a noisy environment (noise level ranging from −16.67 dB to −12.87 dB) including other machinery sounds. Our best ML/DL model (i.e., a combination between five acoustic features and an optimized convolutional neural network) is able to detect click sounds in a real assembly production line with an accuracy of 94.55±0.83 %. To the best of our knowledge, this is the first time a click sounds detection system in assembling electrical harnesses of engines for giving feedback to the workers is proposed and implemented in a real-world automotive production line. We consider this work valuable for the automotive industry on how to apply ML/DL approaches for improving the quality of semi-automatic assembly operations. © 2021 Elsevier B.V.
Subjects

Artificial neural net...

Audio signal processi...

Automotive production...

Deep learning

Events sound recognit...

Feature extraction

Machine learning

Supervised learning


Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback