Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. Multistability Analysis of a Piecewise Map via Bifurcations
 
  • Details
Options

Multistability Analysis of a Piecewise Map via Bifurcations

Journal
International Journal of Bifurcation and Chaos
ISSN
0218-1274
1793-6551
Date Issued
2022
Author(s)
B. B. Cassal-Quiroga
H. E. Gilardi-Velázquez
Facultad de Ingeniería - CampAGS  
E. Campos-Cantón
Type
Resource Types::text::journal::journal article
DOI
10.1142/S0218127422502418
URL
https://scripta.up.edu.mx/handle/20.500.12552/3790
Abstract
<jats:p> In this paper, we investigate the dynamical behavior of a one-dimensional piecewise map based on the logistic map, where generalized multistability can be observed. The proposed system has the unique property that the function is symmetric with respect to the origin but not its behavior, furthermore this system can display three types of multistability, and chaos for both, monostable and bistable behaviors. The stability analysis of the proposed system is presented. We describe the structure of bistable regions in the bifurcation diagram. Particular attention is paid to the chaotic regions. Corresponding to coexisting attractors, three scenarios of coexisting attractors, namely fixed points, periodic orbits, and chaotic attractors, can be found, which are unreported behaviors in discrete chaotic systems. The mechanism that leads to multistability phenomenon including pitchfork bifurcation, period-halving bifurcations, and the coexisting invariant sets is demonstrated. Furthermore, the Lyapunov exponent is analyzed with the type of multistability distinguished for a given set of parameters. </jats:p>

Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback