Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. Cardiovascular Disease Detection Using Machine Learning
 
  • Details
Options

Cardiovascular Disease Detection Using Machine Learning

Journal
Computación y Sistemas
ISSN
2007-9737
1405-5546
Date Issued
2022
Author(s)
Ibarra, Rodrigo
Facultad de Ingeniería - CampCM  
León, Jaime
Facultad de Ingeniería - CampCM  
Ávila, Iván
Facultad de Ingeniería - CampCM  
Ponce, Hiram  
Facultad de Ingeniería - CampCM  
Type
Resource Types::text::journal::journal article
DOI
10.13053/CyS-26-4-4422
URL
https://scripta.up.edu.mx/handle/123456789/4105
Abstract
The detection of Cardiovascular Diseases (CVDs) prematurely is of great interest for the Healthcare Industry. According to the World Health Organization, heart diseases represent 32% of global deaths by 2019. In this work, we propose building an interpretable machine learning model to detect CVDs. For this, we use a public dataset consisting of over 320 thousand records and 279 features. We explore the performance of three well-known classifiers and we build them using hyper-parameter techniques. For interpretability, feature relevance is tested. After the experimental results, we found Random Forest to performed the best with 94% of accuracy and 81% of area under the ROC curve. We also implement an easy web application as a tool for detecting CVDs using relevant features information. © 2022 Instituto Politecnico Nacional. All rights reserved.
Subjects

Classification

Heart disease

Machine learning


Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback