Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. A Vision-based Robotic Navigation Method Using an Evolutionary and Fuzzy Q-Learning Approach
 
  • Details
Options

A Vision-based Robotic Navigation Method Using an Evolutionary and Fuzzy Q-Learning Approach

Journal
Journal of Artificial Intelligence and Technology
ISSN
2766-8649
2766-8649
Publisher
Intelligence Science and Technology Press
Date Issued
2024
Author(s)
Cuesta-Solano, Roberto
Facultad de Ingeniería - CampCM  
Moya-Albor, Ernesto  
Facultad de Ingeniería - CampCM  
Ponce, Hiram  
Facultad de Ingeniería - CampCM  
Brieva, Jorge  
Facultad de Ingeniería - CampCM  
Type
Resource Types::text::journal::journal article
DOI
10.37965/jait.2024.0511
URL
https://scripta.up.edu.mx/handle/20.500.12552/11656
Abstract
The paper presents a fuzzy Q-learning (FQL) and optical flow-based autonomous navigation approach. The FQL method takes decisions in an unknown environment and without mapping, using motion information and through a reinforcement signal into an evolutionary algorithm. The reinforcement signal is calculated by estimating the optical flow densities in areas of the camera to determine whether they are “dense” or “thin” which has a relationship with the proximity of objects. The results obtained show that the present approach improves the rate of learning compared with a method with a simple reward system and without the evolutionary component. The proposed system was implemented in a virtual robotics system using the CoppeliaSim software and in communication with Python. ©The authors ©INTELLIGENCE SCIENCE AND TECHNOLOGY PRESS INC.
Subjects

CoppeliaSim

Evolutionary algorith...

Fuzzy Q-learning

Optical flow

Reinforced learning

Vision-based control ...

License
Acceso Abierto
How to cite
Cuesta-Solano, R., Moya-Albor, E., Brieva, J., & Ponce, H. (2024). A Vision-Based Robotic Navigation Method Using an Evolutionary and Fuzzy Q-Learning Approach. Journal of Artificial Intelligence and Technology, 4(4), 363–369. https://doi.org/10.37965/jait.2024.0511

Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback