Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. Stair Climbing Robot Based on Convolutional Neural Networks for Visual Impaired
 
  • Details
Options

Stair Climbing Robot Based on Convolutional Neural Networks for Visual Impaired

Journal
2019 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE)
ISSN
2198-4182
Date Issued
2019
Author(s)
Campos, Guillermo
Facultad de Ingeniería - CampCM  
Poza, David
Facultad de Ingeniería - CampCM  
Reyes, Moises
Facultad de Ingeniería - CampCM  
Zacate, Alma
Facultad de Ingeniería - CampCM  
Ponce, Hiram  
Facultad de Ingeniería - CampCM  
Brieva, Jorge  
Facultad de Ingeniería - CampCM  
Moya-Albor, Ernesto
Facultad de Ingeniería - CampCM  
Type
Resource Types::text::conference output::conference proceedings::conference paper
DOI
10.1109/ICMEAE.2019.00027
URL
https://scripta.up.edu.mx/handle/123456789/4130
Abstract
When a person loses the sense of sight, in general, it is suggested to use a white cane to perform daily activities. However, using a white cane limits the movement of a person. In addition, guide dogs can be served in this impairment. However, the acquisition and maintenance of a guide dog is extremely high for people in development countries. In this regard, this paper presents a proof-of-concept of a low-cost robotic system able to guide a visual impaired, as a guide dog. The robot is specially designed for climbing stairs at indoors, and it uses convolutional neural networks (CNN) for both object detection and hand gesture recognition for special instructions from the user. Experimental results showed that our prototype robot can climb stairs with 86.7% of efficiency in concrete stair surfaces. Also, the visual representation by CNN performed more than 98% accuracy. © 2019 IEEE.
Subjects

Deep learning

Fall detection system...

CNN (Convolutional Ne...

Multiple cameras

How to cite
Espinosa, R., Ponce, H., Gutiérrez, S., Martínez-Villaseñor, L., Brieva, J. & Moya-Albor, E. (2020). Application of Convolutional Neural Networks for Fall Detection Using Multiple Cameras. En: Ponce, H., Martínez-Villaseñor, L., Brieva, J., Moya-Albor, E. (editores) Challenges and Trends in Multimodal Fall Detection for Healthcare ; (Studies in Systems, Decision and Control, vol 273), pp. 97-120. Cham, Springer. https://doi.org/10.1007/978-3-030-38748-8_5

Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback