Double-phase steels are an excellent alternative in the production of automotive parts that require high mechanical resistance, high impact strength and elevated elongation. These materials are produced using low-alloy steels as a basis, reducing costs and resulting in a combination of martensite and ferrite structures with ultrafine grain sizes. These characteristics are accomplished through a strict control of rolling conditions: strain rate, cooling rate and direct quenching. This work presents the results of tension testing of two types of double phased steels, along with microstructural characterization, in order to understand the effect of the advanced thermomechanical controlled rolling processes on the formation of the microstructure and the resulting mechanical properties.