Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. Neural Architecture Search Using Trajectory Metaheuristics to Classify Coronary Stenosis
 
  • Details
Options

Neural Architecture Search Using Trajectory Metaheuristics to Classify Coronary Stenosis

Journal
2024 20th International Symposium on Medical Information Processing and Analysis (SIPAIM)
Publisher
IEEE
Date Issued
2024
Author(s)
Franco-Gaona, Erick
Avila-Garcia, Maria-Susana
Cruz-Aceves, Ivan
Orocio-Garcia, Hiram-Efrain
Escobedo-Gordillo, Andrés
Facultad de Ingeniería - CampCM  
Brieva, Jorge  
Facultad de Ingeniería - CampCM  
Type
Resource Types::text::conference output::conference proceedings
DOI
10.1109/SIPAIM62974.2024.10783513
URL
https://scripta.up.edu.mx/handle/20.500.12552/11856
Abstract
Coronary stenosis is a disease that claims millions of lives each year. Early detection of this condition is crucial for patient survival. Currently, physicians perform detection by x-ray angiograms, however, the variability of diagnoses and the difficulty of access to expertise has led to the need for automated, computer-assisted diagnosis. In this work explores the use of deep learning to classify stenosis or non-stenosis in angiogram images using convolutional neural networks from scratch. A methodology to fine-tuning network architectures automatically using metaheuristic optimization techniques is proposed, demonstrating superior performance to fine-tuning empirically and proposing a new architecture in the literature to classify coronary stenosis. The proposed architectures achieved 86.02% and 95.67% F1-score with simulated annealing and iterated local search techniques, respectively. ©The authors ©IEEE
Subjects

Metaheuristics

Computer architecture...

Simulated annealing

Medical services

Information processin...

Network architecture

Trajectory

X-ray imaging

Medical diagnostic im...

Diseases

License
Acceso Restringido
URL License
https://creativecommons.org/licenses/by-nc-sa/4.0/
How to cite
Franco-Gaona, E., Avila-Garcia, M.-S., Cruz-Aceves, I., Orocio-Garcia, H.-E., Escobedo-Gordillo, A., & Brieva, J. (2024). Neural Architecture Search Using Trajectory Metaheuristics to Classify Coronary Stenosis. In 2024 20th International Symposium on Medical Information Processing and Analysis (SIPAIM) (pp. 1–4). 2024 20th International Symposium on Medical Information Processing and Analysis (SIPAIM). IEEE. https://doi.org/10.1109/sipaim62974.2024.10783513
Table of contents
I. Introduction -- II. Convolutional Neural Networks -- III. Neural Architecture Search -- IV. Results and Discussion.

Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback