Repository logo
  • English
  • Deutsch
  • Español
  • Français
  • Log In
    New user? Click here to register.Have you forgotten your password?
Universidad Panamericana
  • Communities & Collections
  • Research Outputs
  • Fundings & Projects
  • Researchers
  • Statistics
  • Feedback
  • English
  • Deutsch
  • Español
  • Français
  1. Home
  2. CRIS
  3. Publications
  4. New Particle Swarm Optimizer Algorithm with Chaotic Maps for Combinatorial Global Optimization Problems. An Application to the Deconvolution of Mössbauer Spectra
 
  • Details
Options

New Particle Swarm Optimizer Algorithm with Chaotic Maps for Combinatorial Global Optimization Problems. An Application to the Deconvolution of Mössbauer Spectra

Journal
Data-Driven Innovation for Intelligent Technology : Perspectives and Applications in ICT
ISSN
2197-6503
Publisher
Springer
Date Issued
2024-01-01
Author(s)
Martínez Ríos, Félix Orlando  
Facultad de Ingeniería - CampCM  
Jiménez-López, Omar  
Facultad de Ingeniería - CampGDL  
González Morfín, Juan
Facultad de Ingeniería - CampCM  
Type
Resource Types::text::book::book part
DOI
10.1007/978-3-031-54277-0_7
URL
https://scripta.up.edu.mx/handle/123456789/10397
Abstract
In this chapter, we present a novel method for addressing global optimization problems inspired by evolutionary algorithms found in nature. We integrate the Comprehensive Learning Particle Swarm Optimization (CLPSO) algorithm with random value generation based on chaotic maps. The resulting algorithm is applied to the computationally complex task of deconvoluting Mossbauer spectra. We implement ten chaotic maps to generate random values and compare their performance with traditional random number generators. Through experiments, we demonstrate that the developed algorithm excels in exploring the search space and exhibits fast intensification in finding the global minimum. In addition, we perform a comprehensive review of existing solutions to the Mossbauer spectrum deconvolution problem, highlighting the scarce availability of developments in this area. We also present a user-friendly program designed with an intuitive interface to facilitate the deconvolution process by Spector Mossbauer. This program will be freely distributed without operational restrictions. Experimental validation is performed on Mossbauer spectra generated using the developed program and those obtained by experimental means, affirming the efficiency of the new algorithm conceived. ©Springer.
Subjects

Data Science for Indu...

Artificial Intelligen...

Technology Trends

Machine Learning for ...

Machine Learning Appl...

Data Science in Latin...

Applied Artificial In...

Data-driven Innovatio...

Business Innovation

Technology Industries...

License
Acceso Restringido
How to cite
Martinez-Rios, F., Jiménez-López, O., Alvarez Guillen, L.A. (2024). New Particle Swarm Optimizer Algorithm with Chaotic Maps for Combinatorial Global Optimization Problems. An Application to the Deconvolution of Mössbauer Spectra. In: Ponce, H., Brieva, J., Lozada-Flores, O., Martínez-Villaseñor, L., Moya-Albor, E. (eds) Data-Driven Innovation for Intelligent Technology. Studies in Big Data, vol 148. Springer, Cham. https://doi.org/10.1007/978-3-031-54277-0_7

Copyright 2024 Universidad Panamericana
Términos y condiciones | Política de privacidad | Reglamento General

Built with DSpace-CRIS software - Extension maintained and optimized by - Hosting & support SCImago Lab

  • Cookie settings
  • Privacy policy
  • End User Agreement
  • Send Feedback