Now showing 1 - 10 of 30
No Thumbnail Available
Publication

The Relevance of Cataract as a Risk Factor for Age-Related Macular Degeneration: A Machine Learning Approach

2019 , Martínez Velasco, Antonieta Teodora , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis , Pérez Ortiz, Andric Christopher , Zenteno, Juan Carlos , Estrada Mena, Francisco Javier

Age-related macular degeneration (AMD) is the leading cause of visual dysfunction and irreversible blindness in developed countries and a rising cause in underdeveloped countries. There is a current debate on whether or not cataracts are significant risk factors for AMD development. In particular, research regarding this association is so far inconclusive. For this reason, we aimed to employ here a machine-learning approach to analyze the relevance and importance of cataracts as a risk factor for AMD in a large cohort of Hispanics from Mexico. We conducted a nested case control study of 119 cataract cases and 137 healthy unmatched controls focusing on clinical data from electronic medical records. Additionally, we studied two single nucleotide polymorphisms in the CFH gene previously associated with the disease in various populations as positive control for our method. We next determined the most relevant variables and found the bivariate association between cataracts and AMD. Later, we used supervised machine-learning methods to replicate these findings without bias. To improve the interpretability, we detected the five most relevant features and displayed them using a bar graph and a rule-based tree. Our findings suggest that bilateral cataracts are not a significant risk factor for AMD development among Hispanics from Mexico. © 2019 by the authors.

No Thumbnail Available
Publication

Sensor Location Analysis and Minimal Deployment for Fall Detection System

2020 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Nuñez-Martinez, José

Human falls are considered as an important health problem worldwide. Fall detection systems can alert when a fall occurs reducing the time in which a person obtains medical attention. In this regard, there are different approaches to design fall detection systems, such as wearable sensors, ambient sensors, vision devices, and more recently multimodal approaches. However, these systems depend on the types of devices selected for data acquisition, the location in which these devices are placed, and how fall detection is done. Previously, we have created a multimodal dataset namely UP-Fall Detection and we developed a fall detection system. But the latter cannot be applied on realistic conditions due to a lack of proper selection of minimal sensors. In this work, we propose a methodological analysis to determine the minimal number of sensors required for developing an accurate fall detection system, using the UP-Fall Detection dataset. Specifically, we analyze five wearable sensors and two camera viewpoints separately. After that, we combine them in a feature level to evaluate and select the most suitable single or combined sources of information. From this analysis we found that a wearable sensor at the waist and a lateral viewpoint from a camera exhibits 98.72% of accuracy (intra-subject). At the end, we present a case study on the usage of the analysis results to deploy a minimal-sensor based fall detection system which finally reports 87.56% of accuracy (inter-subject).

No Thumbnail Available
Publication

Special Issue on Interdisciplinary Artificial Intelligence: Methods and Applications of Nature-Inspired Computing

2022 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , González-Mendoza, Miguel , Fonseca, Pablo A.

Inspiration in nature has been widely explored, from the macro to micro-scale. From a scientific perspective, these methods inspired by nature have proven to be efficient tools for tackling real-world problems because most of the latter are highly complex or the resources are limited to analyze them. This inspiration is justified by the fact that natural phenomena mainly emphasize adaptability, optimization, robustness, and organization, among other properties, to deal with complexity. In that sense, three methodologies are commonly considered: human-designed problem-solving techniques inspired by nature, the synthesis of natural phenomena to develop algorithms, and the use of nature-inspired materials to perform computations. Some applications of nature-inspired computing include data mining, machine learning, optimization, robotics, engineering control systems, human–machine interaction, healthcare, the Internet of Things, cloud computing, smart cities, and many others.|| This Special Issue aimed to cover original research works with emphasis on the methodologies and applications of nature-inspired computing to handle the above-mentioned complex systems. We received a total of 38 submitted papers, and 18 papers were accepted (covering 47% of acceptance rate).|| The Special Issue presents different works related to metaheuristic optimization methods and their applications of human brain inspiration and neural networks, natural language processing-based applications, and fuzzy-logic-based applications. ©2022 Applied Sciences, MDPI.

No Thumbnail Available
Publication

Towards a Ubiquitous User Model for Profile Sharing and Reuse

2012 , Martinez-Villaseñor, Lourdes , Gonzalez-Mendoza, Miguel , Hernandez-Gress, Neil

People interact with systems and applications through several devices and are willing to share information about preferences, interests and characteristics. Social networking profiles, data from advanced sensors attached to personal gadgets, and semantic web technologies such as FOAF and microformats are valuable sources of personal information that could provide a fair understanding of the user, but profile information is scattered over different user models. Some researchers in the ubiquitous user modeling community envision the need to share user model's information from heterogeneous sources. In this paper, we address the syntactic and semantic heterogeneity of user models in order to enable user modeling interoperability. We present a dynamic user profile structure based in Simple Knowledge Organization for the Web (SKOS) to provide knowledge representation for ubiquitous user model. We propose a two-tier matching strategy for concept schemas alignment to enable user modeling interoperability. Our proposal is proved in the application scenario of sharing and reusing data in order to deal with overweight and obesity.

No Thumbnail Available
Publication

Enrichment of Learner Profile with Ubiquitous User Model Interoperability

2014 , Martinez-Villaseñor, Lourdes , González-Mendoza, Miguel , Danvila Del Valle, Ignacio

Nowadays, there is a constant need of acquiring new knowledge and skills to keep up with the demands of changing environment. The design and development of training and educational systems that enable effective personalized learning help obtaining changing skills and fill competence gaps. The computational effort to create a user model that represents user’s knowledge, characteristics, interests, goals, background and preferences is repeatedly done by many systems and applications in several domains. Each system ends up with a partial view of the user. Researchers in user modeling foresee the need of sharing and reusing user model information in order to obtain a better understanding of the user and be able to provide personalized and proactive services. In this paper we present an application scenario of sharing and reusing information scattered in most commonly used applications to enhance learner profiles. ©Instituto Politécnico Nacional

No Thumbnail Available
Publication

Explainable artificial hydrocarbon networks classifier applied to preeclampsia

2024 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Martínez Velasco, Antonieta Teodora

Explainability is crucial in domains where system decisions have significant implications for human trust in black-box models. Lack of understanding regarding how these decisions are made hinders the adoption of so-called clinical decision support systems. While neural networks and deep learning methods exhibit impressive performance, they remain less explainable than white-box approaches. Artificial Hydrocarbon Networks (AHN) is an effective black-box model that can be used to support critical clinical decisions if accompanied by explainability mechanisms to instill confidence among clinicians. In this paper, we present a use case involving global and local explanations for AHN models, provided with an automatic procedure so-called eXplainable Artificial Hydrocarbon Networks (XAHN). We apply XAHN to preeclampsia prognosis, enabling interpretability within an accurate black-box model. Our approach involves training a suitable AHN model using the cross-validation with ten repetitions, followed by a comparative analysis against four well-known machine learning techniques. Notably, the AHN model outperformed the others, achieving an F1-score of 74.91%. Additionally, we assess the efficacy of our XAHN explainer through a survey applied to clinicians, evaluating the goodness and satisfaction of the provided explanations. To the best of our knowledge, this work represents one of the earliest attempts to address the explainability challenge in preeclampsia prediction.© 2024 The Author(s). Published by Elsevier Inc.

No Thumbnail Available
Publication

Challenges and trends in multimodal fall detection for healthcare : Preface

2020 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Moya-Albor, Ernesto , Brieva, Jorge

This book focuses on novel implementations of sensor technologies, artificial intelligence, machine learning, computer vision and statistics for automated, human fall recognition systems and related topics using data fusion. It includes theory and coding implementations to help readers quickly grasp the concepts and to highlight the applicability of this technology. For convenience, it is divided into two parts. The first part reviews the state of the art in human fall and activity recognition systems, while the second part describes a public dataset especially curated for multimodal fall detection. It also gathers contributions demonstrating the use of this dataset and showing examples. This book is useful for anyone who is interested in fall detection systems, as well as for those interested in solving challenging, signal recognition, vision and machine learning problems. Potential applications include health care, robotics, sports, human–machine interaction, among others. ©2020 Springer Nature Switzerland AG.

No Thumbnail Available
Publication

A Flexible Approach for Human Activity Recognition Using Artificial Hydrocarbon Networks

2016 , Ponce, Hiram , Miralles-Pechuán, Luis , Martinez-Villaseñor, Lourdes

Physical activity recognition based on sensors is a growing area of interest given the great advances in wearable sensors. Applications in various domains are taking advantage of the ease of obtaining data to monitor personal activities and behavior in order to deliver proactive and personalized services. Although many activity recognition systems have been developed for more than two decades, there are still open issues to be tackled with new techniques. We address in this paper one of the main challenges of human activity recognition: Flexibility. Our goal in this work is to present artificial hydrocarbon networks as a novel flexible approach in a human activity recognition system. In order to evaluate the performance of artificial hydrocarbon networks based classifier, experimentation was designed for user-independent, and also for user-dependent case scenarios. Our results demonstrate that artificial hydrocarbon networks classifier is flexible enough to be used when building a human activity recognition system with either user-dependent or user-independent approaches.

No Thumbnail Available
Publication

Editorial: Artificial intelligence in brain-computer interfaces and neuroimaging for neuromodulation and neurofeedback

2022 , Ponce, Hiram , Yinong, Chen , Martinez-Villaseñor, Lourdes

Neuromodulation and neurofeedback are two alternative non-pharmacological ways of treating neurological related diseases and disorders (Grazzi et al., 2021; Hamed et al., 2022). Neuromodulation refers to as the modulation of brain function via the application of weak direct current (Lewis et al., 2016). Neurofeedback is a psychophysiological procedure that provides models of neural activity to subjects aiming to control them online (Marzbani et al., 2016). Both alternatives have been successfully applied in a variety of neurological conditions including Parkinson's disease, chronic pain, epilepsy, depression, essential tremor, among many others (Tsatali et al., 2019; Baptista et al., 2020; Hamed et al., 2022). Typical challenges in these types of treatment are related to the way of collecting data, the improvement in the efficiency of the methods, the interpretability of feedback signals, to name a few (Johnson et al., 2013; Lewis et al., 2016; Marzbani et al., 2016; Papo, 2019). © 2023 Frontiers Media S.A. All rights reserved

No Thumbnail Available
Publication

Distributed evolutionary learning control for mobile robot navigation based on virtual and physical agents

2020 , Ponce, Hiram , Moya-Albor, Ernesto , Martinez-Villaseñor, Lourdes , Brieva, Jorge

This paper presents a distributed evolutionary learning control based on social wound treatment for mobile robot navigation using an integrated multi-robot system comprised of simulated and physical robots. To do so, this work proposes an extension of the population-based metaheuristic wound treatment optimization (WTO) method into a distributed scheme. In addition, this distributed WTO method is implemented on the multi-robot system allowing them to experience the environment in their own and communicate their findings, resulting in an emergence intelligence. We implemented our proposal using the combination of five simulated robots with one physical robot for tuning a navigation controller to move freely in a workspace. Results showed that the solution found by this multi-robot system aims using the output controller in the physical robot for successfully achieving the goal to move the robot around a U-maze, without applying any transfer learning approach. We consider this proposal useful in evolutionary robotics, and of great importance to decrease the gap related to transfer knowledge in robotics from simulation to reality. © 2019 Elsevier B.V.