Now showing 1 - 4 of 4
No Thumbnail Available
Publication

Critical Factors in the Participation of Women in Science, Technology, Engineering, and Mathematics -STEM- Disciplines in Mexico

2024-01-01 , Martínez Velasco, Antonieta Teodora , Terán Bustamante, Antonia , De la Torre Díaz, Lorena , González, Fernando José Menéndez

No Thumbnail Available
Publication

Impacto de los microcréditos en la movilidad social en México : enfoque en la adquisición de activos entre 2003 y 2020

2023 , De la Torre Díaz, Lorena , Rodríguez Aguilar, Román , Rivas Aceves, Salvador

La Movilidad Social se refiere a los cambios en las condiciones socioeconómicas de los individuos durante su vida o entre generaciones. La posesión de activos se ha empleado como medida del patrimonio de los hogares para evaluar su movilidad social. El presente estudio propone evaluar la relación existente entre la movilidad social y los activos de los hogares, añadiendo los microcréditos como la fuente de financiamiento para adquirir un conjunto de activos de equipamiento del hogar. Mediante un modelo de microsimulación se concluye que los microcréditos para adquisición de activos sí generan movilidad social ascendente pues permitirían que alrededor del 32% de los hogares pudieran ubicarse en un nivel socioeconómico superior. Se recomienda el diseño de un esquema mixto (público-privado) para ampliar el alcance del impacto

No Thumbnail Available
Publication

An Asset Index Proposal for Households in Mexico Applying the Mixed Principal Components Analysis Methodology

2021 , Rodríguez Aguilar, Román , De la Torre Díaz, Lorena

The development of assets indices has grown as an alternative to measure wealth from different generations in the evaluation of social mobility. A proposal of the development of an asset index is presented using the GSVD-based mixed principal components analysis (PCAMix package in R). The contribution rests in the combination of both numerical and categorical data and the integration of the simultaneous effect of these variables in the index. It was used in profiling the Mexican households according to the information from the 2018 National Household Income and Expenditure and the determination of the Gini coefficient to evaluate the inequality of distribution at the state level. Results show a high level of disparity in the distribution of assets with only 0.01% of the households possessing 40% or more of the assets included in the index, being the southern region where greatest challenges for ascending social mobility.© Springer Nature

No Thumbnail Available
Publication

Crédito hipotecario: un modelo predictivo de discriminación de riesgo

2023 , González-Rossano, Carlos , De la Torre Díaz, Lorena , Terán Bustamante, Antonia

Diversos estudios demuestran la relación entre el acceso a la vivienda y la superación de la pobreza. Sin embargo, existe un rezago en el acceso a la vivienda digna en México y la falta de historial crediticio es una limitante para el acceso a créditos bancarios. El objetivo de la presente investigación es analizar los criterios de selección de crédito hipotecario y proponer un modelo de gestión de riesgos que permita a la banca financiar a un mayor número de personas en la adquisición o mejora de su vivienda. La estrategia metodológica se basa en técnicas de aprendizaje automático apoyadas en la ciencia de datos para crear un modelo predictivo del cumplimiento del crédito basado en características individuales. Los resultados muestran un modelo predictivo de discriminación de riesgo con una confiabilidad del 85% para créditos a la vivienda, lo cual permite ampliar la base potencial de personas susceptibles de acceder a financiamiento hipotecario. El derecho a una vivienda digna presenta un rezago importante en el país y hasta ahora los bancos al proponer un modelo predictivo de selección de riesgo hipotecario se da respuesta a la pregunta de investigación que refiere a las acciones que puede ejecutar la banca para resolver el problema de falta de acceso a vivienda digna. Los bancos pueden establecer sus criterios de selección de riesgo apoyados en la ciencia y analítica de datos y la aplicación de modelos predictivos de aprendizaje automático utilizando su amplia base de datos histórica.© Revista Venezolana de Gerencia