Now showing 1 - 10 of 75
No Thumbnail Available
Publication

Explainable artificial hydrocarbon networks classifier applied to preeclampsia

2024 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Martínez Velasco, Antonieta Teodora

Explainability is crucial in domains where system decisions have significant implications for human trust in black-box models. Lack of understanding regarding how these decisions are made hinders the adoption of so-called clinical decision support systems. While neural networks and deep learning methods exhibit impressive performance, they remain less explainable than white-box approaches. Artificial Hydrocarbon Networks (AHN) is an effective black-box model that can be used to support critical clinical decisions if accompanied by explainability mechanisms to instill confidence among clinicians. In this paper, we present a use case involving global and local explanations for AHN models, provided with an automatic procedure so-called eXplainable Artificial Hydrocarbon Networks (XAHN). We apply XAHN to preeclampsia prognosis, enabling interpretability within an accurate black-box model. Our approach involves training a suitable AHN model using the cross-validation with ten repetitions, followed by a comparative analysis against four well-known machine learning techniques. Notably, the AHN model outperformed the others, achieving an F1-score of 74.91%. Additionally, we assess the efficacy of our XAHN explainer through a survey applied to clinicians, evaluating the goodness and satisfaction of the provided explanations. To the best of our knowledge, this work represents one of the earliest attempts to address the explainability challenge in preeclampsia prediction.© 2024 The Author(s). Published by Elsevier Inc.

No Thumbnail Available
Publication

A Survey of Machine Learning Approaches for Age Related Macular Degeneration Diagnosis and Prediction

2018 , Martínez Velasco, Antonieta Teodora , Martinez-Villaseñor, Lourdes

Age Related Macular Degeneration (AMD) is a complex disease caused by the interaction of multiple genes and environmental factors. AMD is the leading cause of visual dysfunction and blindness in developed countries, and a rising cause in underdeveloped countries. Currently, retinal images are studied in order to identify drusen in the retina. The classification of these images allows to support the medical diagnosis. Likewise, genetic variants and risk factors are studied in order to make predictive studies of the disease, which are carried out with the support of statistical tools and, recently, with Machine Learning (ML) methods. In this paper, we present a survey of studies performed in complex diseases under both approaches, especially for the case of AMD. We emphasize the approach based on the genetic variants of individuals, as it is a support tool for the prevention of AMD. According to the vision of personalized medicine, disease prevention is a priority to improve the quality of life of people and their families, as well as to avoid the inherent health burden. © Springer Nature Switzerland AG 2018.

No Thumbnail Available
Publication

Enrichment of Learner Profile with Ubiquitous User Model Interoperability

2014 , Martinez-Villaseñor, Lourdes , González-Mendoza, Miguel , Danvila Del Valle, Ignacio

Nowadays, there is a constant need of acquiring new knowledge and skills to keep up with the demands of changing environment. The design and development of training and educational systems that enable effective personalized learning help obtaining changing skills and fill competence gaps. The computational effort to create a user model that represents user’s knowledge, characteristics, interests, goals, background and preferences is repeatedly done by many systems and applications in several domains. Each system ends up with a partial view of the user. Researchers in user modeling foresee the need of sharing and reusing user model information in order to obtain a better understanding of the user and be able to provide personalized and proactive services. In this paper we present an application scenario of sharing and reusing information scattered in most commonly used applications to enhance learner profiles. ©Instituto Politécnico Nacional

No Thumbnail Available
Publication

Assessment of CFH and HTRA1 polymorphisms in age-related macular degeneration using classic and machine-learning approaches

2020 , Martínez Velasco, Antonieta Teodora , Pérez Ortiz, Andric Christopher , Antonio-Aguirre, Bani , Martinez-Villaseñor, Lourdes , Palacio-Pastrana, Claudia , Lira, Esmeralda , Zenteno, Juan Carlos , Ramírez-Sánchez, Israel , Zepeda-Palacio, Claudia , Mendoza Vera, Cristina Azucena , Camacho-Ordóñez, Azyadeh , Ortiz Bibriesca, Daniela , Estrada Mena, Francisco Javier

CFH: and HTRA1 are pivotal genes driving increased risk for age-related macular degeneration (AMD) among several populations. Here, we performed a hospital-based case-control study to evaluate the effects of three single nucleotide polymorphisms (SNPs) among Hispanics from Mexico. Materials and methods: 122 cases and 249 controls were genotyped using Taqman probes. Experienced ophthalmologists diagnosed AMD following the American Association of Ophthalmology guidelines. We studied CFH (rs1329428, rs203687) and HTRA1 (rs11200638) SNPs thoroughly by logistic regression models (assuming different modes of inheritance) and machine learning-based methods (ML). HTRA1: rs11200638 is the most significant polymorphism associated with AMD in our studied population. In a multivariate regression model adjusted for clinically and statistically meaningful covariates, the A/G and A/A genotypes increased the odds of disease by a factor of 2.32 and 7.81, respectively (P < .05) suggesting a multiplicative effect of the polymorphic A allele. Furthermore, this observation remains statistically meaningful in the allelic, dominant, and recessive models, and ML algorithms. When stratifying by phenotype, this polymorphism was significantly associated with increased odds for geographic atrophy (GA) in a recessive mode of inheritance (12.4, p < .05). Conclusions: In sum, this work supports a strong association between HTRA1 genetic variants and AMD in Hispanics from Mexico, especially with GA. Moreover, ML was able to replicate the results of conventional biostatistics methods unbiasedly. © 2020 Taylor & Francis Group, LLC.

No Thumbnail Available
Publication

Ethical Design Framework for Artificial Intelligence Healthcare Technologies

2024-01-01 , Martinez-Villaseñor, Lourdes , Ponce, Hiram

No Thumbnail Available
Publication

Machine learning method to establish the connection between age related macular degeneration and some genetic variations

2016 , Martínez Velasco, Antonieta Teodora , Zenteno, Juan Carlos , Martinez-Villaseñor, Lourdes , Miralles-Pechuán, Luis , Pérez Ortiz, Andric Christopher , Estrada Mena, Francisco Javier

Medicine research based in machine learning methods allows the improvement of diagnosis in complex diseases. Age related Macular Degeneration (AMD) is one of them. AMD is the leading cause of blindness in the world. It causes the 8.7% of blind people. A set of case and controls study could be developed by machine-learning methods to find the relation between Single Nucleotide Polymorphisms (SNPs) SNP_A, SNP_B, SNP_C and AMD. In this paper we present a machine-learning based analysis to determine the relation of three single nucleotide SNPs and the AMD disease. The SNPs SNP_B, SNP_C remained in the top four relevant features with ophthalmologic surgeries and bilateral cataract. We aim also to determine the best set of features for the classification process. © Springer International Publishing AG 2016.

No Thumbnail Available
Publication

Design of a Soft Gripper Using Genetic Algorithms

2021 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Mayorga-Acosta, Carlos

In this paper, we present an artificial intelligence-assisted design of a soft robotic gripper. First, we formulate the design of the soft gripper as an optimization problem. Then, we design and configure a genetic algorithm (GA) method to solve the problem under design constraints. Lastly, we implement the whole system in co-simulation between the GA and a computer-aided design software that evaluates the candidate solutions using finite element analysis. A network-attached storage server connecting multiple nodes runs the GA method in parallel, to accelerate the process. After experimentation, we present simulation results to validate our approach. © 2021 Instituto Politécnico Nacional. All rights reserved.

No Thumbnail Available
Publication

A Methodology Based on Deep Q-Learning/Genetic Algorithms for Optimizing COVID-19 Pandemic Government Actions

2020 , Miralles-Pechuán, Luis , Jiménez, Fernando , Ponce, Hiram , Martinez-Villaseñor, Lourdes

Whenever countries are threatened by a pandemic, as is the case with the COVID-19 virus, governments need help to take the right actions to safeguard public health as well as to mitigate the negative effects on the economy. A restrictive approach can seriously damage the economy. Conversely, a relaxed one may put at risk a high percentage of the population. Other investigations in this area are focused on modelling the spread of the virus or estimating the impact of the different measures on its propagation. However, in this paper, we propose a new methodology for helping governments in planning the phases to combat the pandemic based on their priorities. To this end, we implement the SEIR epidemiological model to represent the evolution of the COVID-19 virus on the population. To optimize the best sequences of actions governments can take, we propose a methodology with two approaches, one based on Deep Q-Learning and another one based on Genetic Algorithms. The sequences of actions (confinement, self-isolation, two-meter distance or not taking restrictions) are evaluated according to a reward system focused on meeting two objectives: firstly, getting few people infected so that hospitals are not overwhelmed, and secondly, avoiding taking drastic measures which could cause serious damage to the economy. The conducted experiments evaluate our methodology based on the accumulated rewards during the established period. The experiments also prove that it is a valid tool for governments to reduce the negative effects of a pandemic by optimizing the planning of the phases. According to our results, the approach based on Deep Q-Learning outperforms the one based on Genetic Algorithms. © 2020 ACM.

No Thumbnail Available
Publication

Application of Convolutional Neural Networks for Fall Detection Using Multiple Cameras

2020 , Espinosa Loera, Ricardo Abel , Ponce, Hiram , Gutiérrez, Sebastián , Martinez-Villaseñor, Lourdes , Moya-Albor, Ernesto , Brieva, Jorge

Currently one of the most important research issue for artificial intelligence and computer vision tasks is the recognition of human falls. Due to the current exponential increase in the use of cameras is it common to use vision-based approach for fall detection and classification systems. On another hand deep learning algorithms have transformed the way that we see vision-based problems. The Convolutional Neural Network (CNN) as deep learning technique offers more reliable and robust solutions on detection and classification problems. Focusing only on a vision-based approach, for this work we used images from a new public multimodal data set for fall detection (UP-Fall Detection dataset) published by our research team. In this chapter we present fall detection system using a 2D CNN analyzing multiple camera information. This method analyzes images in fixed time window frames extracting features using an optical flow method that obtains information of relative motion between two consecutive images. For experimental results, we tested this approach in UP-Fall Detection dataset. Results showed that our proposed multi-vision-based approach detects human falls achieving 95.64% in accuracy with a simple CNN network architecture compared with other state-of-the-art methods.

No Thumbnail Available
Publication

Challenges and trends in multimodal fall detection for healthcare : Preface

2020 , Ponce, Hiram , Martinez-Villaseñor, Lourdes , Moya-Albor, Ernesto , Brieva, Jorge

This book focuses on novel implementations of sensor technologies, artificial intelligence, machine learning, computer vision and statistics for automated, human fall recognition systems and related topics using data fusion. It includes theory and coding implementations to help readers quickly grasp the concepts and to highlight the applicability of this technology. For convenience, it is divided into two parts. The first part reviews the state of the art in human fall and activity recognition systems, while the second part describes a public dataset especially curated for multimodal fall detection. It also gathers contributions demonstrating the use of this dataset and showing examples. This book is useful for anyone who is interested in fall detection systems, as well as for those interested in solving challenging, signal recognition, vision and machine learning problems. Potential applications include health care, robotics, sports, human–machine interaction, among others. ©2020 Springer Nature Switzerland AG.